問 4-1. Hamming 距離の定義を述べ、距離の公理を満たすことを確かめよ。

問 4-2. Hamming の球充填上界:

$$q$$
 元 $(n,M,2t+1)$ -符号について、 $M\cdot\sum_{s=0}^t\binom{n}{s}(q-1)^s\leq q^n$

について、

- (1) **これを示せ**。
- (2) 等号が成り立つような (q, n, M, t) の組を幾つか見付けよ。
- (3) 等号を実現する符号を構成せよ(完全符号という)。

問 4-3. $V=\mathbf{\textit{F}}_{a}^{n}$ を $\operatorname{Hamming}$ 距離 d による距離つき線型空間と見る。等距離自己同 型群 $G:=\mathrm{Aut}(V,d)$ が、次の 2 種の自己同型で生成されることを示せ。

● 成分の置換

● 或る成分の非零定数倍

線型 [n, k, d]-符号 C に関する "singleton bound" k + d < n + 1 を示し、 問 4-4. Hamming の球充填上界などと比較せよ。

問 4-5. 奇素数 l に対し、次を示せ。

- (1) -1 が mod l で平方剰余 $\iff l \equiv 1 \pmod{4}$ (平方剰余の第 $l \equiv 1 \pmod{4}$)
- (2) 2 が modl で平方剰余 $\iff l \equiv \pm 1 \pmod{8}$ (平方剰余の第 2 補助法則)

問 4-6. q を素数冪、l を q と互いに素な素数とし、 $R := \mathbf{F}_q[X]/(X^l-1)$ と置く。 \mathbf{F}_q の代数閉包 $\overline{F_q}$ 内の 1 の原始 l 乗根 $\zeta_l \in \overline{F_q}$ を一つ取って固定し、 $F := F_q(\zeta_l)$ と置く。

- (1) $f \in R$ に対し、"f に α を代入した値" $f(\alpha) \in \overline{F_a}$ が well-defined に定まるのは、 $\alpha = \zeta_l^a \ (a = 0, 1, \dots, l - 1)$ の時に限る。
- (2) $R \otimes_{\mathbf{F}_a} F \simeq F^l$ となる。この同型写像を構成せよ。
- (3) $f,g \in R$ に対し、 $f=g \Longleftrightarrow \forall a=0,1,\ldots,l-1: f(\zeta_l^a)=g(\zeta_l^a)$ が成り立つ。

問 4-7. $l \equiv \pm 1 \pmod{8}$ である奇素数 l (従って、2 : mod l で平方剰余) に対して、

$$f_Q(X)=\prod_{a\in Q}(X-\zeta_l^a), \qquad f_N(X)=\prod_{a\in N}(X-\zeta_l^a)$$
とする。また、 $e_Q,e_N\in R=\mathbf{F}_2[X]/(X^l-1)$ を次で定める:

$$e_Q(X) = \sum_{a \in Q} X^a, \qquad e_N(X) = \sum_{a \in N} X^a.$$

- (1) $f_Q(X), f_N(X) \in \mathbf{F}_2[X]$ となり、 \mathbf{F}_2 上で $(\mathbf{F}_2[X]$ 内で) $X^l 1 = (X-1)f_Q(X)f_N(X)$ と分解する。
- (2) $e_Q(X), e_N(X)$ が R の直交冪等元 $(e_Q^2 = e_Q, e_N^2 = e_N, e_Q e_N = 0)$ である。
- (3) Q,N 上で $e_Q(\zeta_l^a),e_N(\zeta_l^a)$ がそれぞれ 0 または 1 の一定値を取る。(どちらである かは (*i* の取り方に依る。)

以下では、 $a \in Q$ に対し $e_Q(\zeta_l^a) = 0$ となるように、 $\zeta_l \in \overline{F_2}$ が選んであるものとする。

- (4) $l \equiv -1 \pmod{8}$ のとき、R の ideal として、 $(e_Q) = (f_Q), (e_N) = ((X-1)f_N)$ と なる。
- (5) $l \equiv 1 \pmod{8}$ のときはどうなるか。適切に修正せよ。

問 4-8. 平方剰余符号 $\mathcal{Q}:=(e_Q)\subset R\simeq (extbf{\emph{F}}_2)^l$ に対し、パリティ検査 bit を加えて延長 した符号 $\widetilde{\mathcal{Q}}\subset (F_2)^{l+1}$ を考える。成分の添字集合 $\{0,1,\ldots,l-1\}\sqcup\{\infty\}$ を $\mathbf{P}^1(F_l)$ と同 一視するとき、 $\operatorname{Aut}(\widehat{\mathcal{Q}}) \supset \operatorname{PSL}(2, F_l)$ となる。特に、 $\operatorname{Aut}(\widehat{\mathcal{Q}})$ は可移である。

問 4-9. 平方剰余符号 $\mathcal{Q} \subset R$ の最小距離 d について

- (1) *d* が奇数であることを示せ。
- (2) "square root bound" $d \ge \sqrt{l}$ を示せ。

問 4-10. 適当な誤り訂正符号について、受信ベクトルの誤りを検出して訂正するプロ グラムを作れ。