$\boxed{7}$ $f(x)=x^2$ の [0,a] での定積分 $I=\int_0^a f(x)dx$ を計算したい。

分割 $\Delta_n: 0=x_0 < x_1 < \cdots < x_n=a$ を n 等分な分割 (即ち $x_i=\frac{ia}{n}$) とする。

- (1) 各小区間 $[x_{i-1},x_i]$ での f(x) の下限 m_i および上限 M_i は?
- (2) $s_{\Delta_n} = \sum_{i=1}^n m_i (x_i x_{i-1})$ 及び $S_{\Delta_n} = \sum_{i=1}^n M_i (x_i x_{i-1})$ を計算せよ。
- (3) 任意の n に対して $s_{\Delta_n} \leq I \leq S_{\Delta_n}$ であることから、 $I = \int_0^a f(x) dx$ を求めよ。 $(\lim_{n \to \infty} s_{\Delta_n}, \lim_{n \to \infty} S_{\Delta_n}$ が、それぞれ存在して等しくなることを確かめよ。)