「この問題は計算機でも計算できないなぁ」 「君は実に…計算が下手なんだなぁ」 「そうじゃなくて計算できないことが証明できるんだよ」 「え?どゆこと?」
「計算」とは何か、「計算できるか/できないか」というような問いに対して、 数学では、「計算機が行なうこと」を「計算」と考え、 計算機が行なえることを「計算モデル」として定式化することによって 「計算」を定義し、明確に答えることを可能にしてきた。 本講義では、代表的な計算モデルを取り上げながら、 計算の理論・アルゴリズムの概念・計算量の理論の初歩を紹介し、 計算の可能性・効率について論ずると共に、 具体的な例として幾つかの基礎的な数理アルゴリズムについて触れる。
代数学・整数論・表現論などの話題の中から、学部の授業では到達しないが、 大学院生としては知っているべき基本的な内容を選んで講義する。 内容は受講生の希望や予備知識などを踏まえて決める 加群のホモロジー代数・有限群の線型表現・代数的整数論・代数幾何 などの基本事項や構成的ガロア理論の話題を予定している。
「この方程式は平方根だけじゃ解けないなぁ」 「君は実に…方程式を解くのが下手なんだなぁ」 「そうじゃなくて平方根だけじゃ解けないことが証明できるんだよ」 「え?どゆこと?」
方程式の解法理論から生まれたガロア理論は、 現代では体の拡大の理論として定式化され、 さらに様々に一般化されて数学のあちこちに現れている。 本講義では、方程式の古典解法から始め、 体論の基礎事項の後に、体の拡大の理論としてのガロア理論を扱い、 最後にガロア理論を踏まえて古典解法を再訪する。
数学を学んでガロア理論を知らずば画竜点睛を欠く。さぁ君もいますぐ登録。
現代社会では、環境・生命・安全・倫理は、重要な課題である。 技術開発やその利用を行う理工系の人間にとって、 これらに対する認識は非常に重要である。 本講義では、これらに対する基礎知識について輪講で講義する。
この中から、2回を担当し、 情報化社会での安全な情報通信を支える数理技術の中から、 秘密分散・誤り訂正符号・暗号通信・電子認証などについて、 その基本的な仕組み・活用・裏付けとなる基礎数理を、実習を交えて紹介する。
小学校の算数以来馴染みの深い「数」、とりわけ「整数」の振舞いについて、 様々な奥深い現象を紹介する。 剰余と合同式、ユークリッドの互除法による最大公約数の計算法、 連分数展開、方程式の解法理論の歴史、素数の概念の意義と見直しなどの話題に加え、 暗号など近年の情報化社会における応用などを通じて、 数理現象の探求が数理技術として活用されている様子にも触れる。 高校の「数学II・数学B」程度の予備知識を想定する。
「0.999…って大体1だよね。」 「大体ってなんだよ。ちょうど1だよ。」 「え?そうなの?」
実数全体の集合Rは多くの数学的現象の基本的な場であり、 ただ数が集まった集合であるだけでなく、 四則演算が出来るという代数構造、 大きい/小さいという順序構造、 近い/遠い・収束・極限という距離・位相構造を備えていることが重要である。 本講義の前半では、 より基本的な数である自然数から実数を構成する道筋を辿ることで 実数の基礎付けを行ない、 後半では、実数の基本的な構造の中でも特に距離・位相構造に焦点を当てて、 幾何学・解析学が展開する場としての実数の基本性質を講義する。 集合・写像・同値関係などの用語を用いるので、 「現代数学A」(或いはそれに準じる科目)を学んでいることが望ましい。
代数的整数論において基礎的な 代数体の整数環・イデアル・単数などについての基本事項について講義する。 後半では、受講生の知識・興味などに応じて、 二次体などでの具体例の計算やその他のトピックスなどに触れたい。 数論で扱う対象は馴染みの深い数であり、具体的に計算できるところが面白い。 理論と実例計算とが結び付くようにしたい。 整数論の奥深さに触れたい人も、計算が好きな人も、挙って登録を。