1-1. 不等式の基本性質.

- $x \le y, y \le z \Longrightarrow x \le z$:推移律(transitive law)
- $x \le y, y \le x \Longrightarrow x = y$: 反対称律 (anti-symmetric law)
- 演算との関係:

$$\star x \leq y \Longrightarrow x + a \leq y + a$$

$$\star a > 0, x \leq y \Longrightarrow ax \leq ay$$

- $|x+y| \le |x| + |y|$: 三角不等式 (triangle inequality)
- 1-2. ε - δ 式の極限の定式化.
 - 関数 f に対し、 $x \longrightarrow a$ のとき $f(x) \longrightarrow b$ (f(x) が b に収束 (converge) する, $\lim_{x \to a} f(x) = b$)

$$\stackrel{\leftarrow}{\iff} \forall \varepsilon > 0 : \exists \delta > 0 : 0 < |x - a| < \delta \Longrightarrow |f(x) - b| < \varepsilon$$

• 関数 f が x = a で連続 (continuous) $\iff \lim_{x \to a} f(x) = f(a)$ $\iff \forall \varepsilon > 0 : \exists \delta > 0 : |x - a| < \delta \implies |f(x) - f(a)| < \varepsilon$

1-3. 演習問題.

- (1) 関数 $f(x)=x^2$ について、f が x=-4 で連続であることを、(ε - δ 流で) 証明したい。
 - (a) 何を示せば良いか。論理記号を交えた数式で記述せよ。
 - (b) そのことを証明せよ。
- (2) 関数 $f(x) = x^3$ について、任意の実数 a に対し、f が x = a で連続であることを、
 - (a) (ε - δ 流に)論理記号を交えた数式で記述せよ。
 - (b) 証明せよ。

1-4. 練習問題.

- (1) 関数 $f(x) = x^2$ が、任意の実数 a に対して x = a で連続であることを証明したい。
 - (a) 関数 f が x=a で連続であることを示すには何を示せば良いか。論理記号を 交えた数式で記述せよ。
 - (b) そのことを証明せよ。証明の形式は次に順うと良い。

$$orall arepsilon > 0$$
 を取る。 $\delta = \boxed{?}$ と取ると、 $0 < |h| < \delta$ に対し、 $\qquad \qquad \cdots$ $\qquad \qquad |f(a+h) - f(a)| < \varepsilon$ を示す $\qquad \cdots$ 従って、 $\lim_{x \to a} f(x) = f(a)$ となり、 f は $x = a$ で連続。

- (2) 「関数 f が x=a で連続でない」ということを、論理記号を交えた数式で記述せよ。
- (3) $x \neq 0$ に対して $f(x) = x \sin \frac{1}{x}$ で定義される関数 f について、 $x \longrightarrow 0$ のとき $f(x) \longrightarrow 0$ (即ち $\lim_{x \to 0} x \sin \frac{1}{x} = 0$) であることを証明せよ。
- (4) $a,c\in \mathbf{R},c>0$ とする。関数 f が x=a で連続であるとき、g(x):=cf(x) で定義される関数 g もまた x=a で連続であることを証明したい。
 - (a) 関数 g が x=a で連続であることを示すには何を示せば良いか。論理記号を 交えた数式で記述せよ。
 - (b) そのことを証明せよ。(c>0 の仮定はもちろん不要であるので、出来ればこの仮定がなくても通用する形で証明を書いてみよ。)
- (5) 関数 f が x=a で連続であり、f(a)>0 であるとき、或る $\delta>0$ に対し、 $|x-a|<\delta$ ならば f(x)>0 となることを証明せよ。(「a の充分近くでは f(x)>0」のようにも言う。)