- 3-1. ε - δ 式の数列の極限・級数の和の定式化. 数列 ${m a}=(a_n)_{n=0}^\infty$ に対し、
 - $n \longrightarrow \infty$ のとき $a_n \longrightarrow \alpha$ (a_n が α に収束(converge)する, $\lim a_n = \alpha$)

 $\iff \forall \varepsilon > 0 : \exists N \in \mathbf{N} : \forall n \in \mathbf{N} : n \geq N \implies |a_n - \alpha| < \varepsilon$

● 数列・級数が収束しない時は全て発散というが、特に、 $n\longrightarrow\infty$ のとき $a_n\longrightarrow+\infty$ (a_n が正の無限大に発散する、 $\lim\limits_{n\to\infty}a_n=+\infty$)

 $\iff \forall M \in \mathbf{R} : \exists N \in \mathbf{N} : \forall n \in \mathbf{N} : n \ge N \Longrightarrow a_n > M$ (負の無限大に発散、 $\lim_{n o\infty}a_n=-\infty$ も同様)

• 級数の和 $\sum_{n=0}^{\infty} a_n = \alpha \text{ (resp. } \pm \infty)$

 \iff 部分和 $s_n:=\sum_{k=0}^n a_k$ の成す数列 ${m s}=(s_n)$ について、 $s_n\longrightarrow \alpha\ ({\rm resp.}\ \pm\infty)$

3-2. 絶対収束.

- (上に)有界な単調増加数列はその上限に収束する。
 - * 数列 $(a_n)_{n=0}^{\infty}$ が上に有界 \Longleftrightarrow $\exists M \in \mathbf{R} : \forall n \in \mathbf{N} : a_n \leq M$
 - * 上に有界な数列 $(a_n)_{n=0}^\infty$ の上限(最小上界) $\sup a_n := \min\{M | \forall N : a_n \leq M\}$ (即ち、 $\forall N : a_n \leq M_0$ かつ $\forall \varepsilon > 0 : \exists N : a_n > M_0 \varepsilon$ となる M_0 のこと)
- ullet 正項級数 $\sum a_n$ はその部分和が (上に)有界ならその上限に収束する。項の順番 を入れ換えても、収束性や極限値は変わらない(同じ値に収束)。
- 絶対収束する級数は収束する。項の順番を入れ換えても、収束性や極限値は変わ らない(同じ値に収束)。

$$\star$$
 級数 $\sum_{n=0}^{\infty}a_n$ が絶対収束 $\stackrel{\leftarrow}{\Longleftrightarrow}$ 級数 $\sum_{n=0}^{\infty}|a_n|$ が収束

- ・収束するが絶対収束しない級数(条件収束)では、項の順番を入れ換えると、(正 負の無限大を含めて)任意の値に収束し得る。
- ullet 交替級数 $\sum_{n=0}^\infty a_n$ (n:偶数の時 $a_n>0$ 、n:奇数の時 $a_n<0$) は、 $a_n\longrightarrow 0$ なら 収束する(絶対収束するとは限らない)。
- 3-3. 級数の収束性判定.正項級数 $\sum_{n=0}^{\infty}a_n$ について
 - 比較判定法:既知の正項級数 $\sum_{n=0}^{\infty} b_n$ と比較して
 - \star 有限個の n を除いて $a_n \leq b_n$ で $\sum b_n$: 収束 $\Longrightarrow \sum a_n$: 収束 \star 有限個の n を除いて $a_n \geq b_n$ で $\sum b_n$: 発散 $\Longrightarrow \sum a_n$: 発散

注:上記の判定法で、

- \star 途中からでも良い($\exists N: \forall n \geq N: a_n \leq b_n$ などでも可)
- * 定数倍しても良い($\exists C>0: a_n \leq Cb_n$ などでも可)
- d'Alembert の判定法 (比テスト):

Alembert の判定法(ピテスト):

$$\star$$
 ($\exists r < 1$: 有限個の n を除いて $\frac{a_{n+1}}{a_n} \leq r$) $\Longrightarrow \sum a_n$: 収束

 $\star \frac{a_{n+1}}{a_n} \longrightarrow r(n \longrightarrow \infty)$ のとき、
 $r < 1 \Longrightarrow \sum a_n$: 収束, $r > 1 \Longrightarrow \sum a_n$: 発散

- Cauchy の判定法 (n 乗根テスト):
 - \star ($\exists r < 1$:有限個の n を除いて $\sqrt[n]{a_n} \leq r$) $\Longrightarrow \sum a_n$:収束

*
$$\sqrt[n]{a_n} \longrightarrow r(n \longrightarrow \infty)$$
 のとき、 $r < 1 \Longrightarrow \sum a_n$:収束, $r > 1 \Longrightarrow \sum a_n$:発散

• 上記の判定法で r=1 の時はこれだけでは判らない。(より精密な判定法あり。)

- 3-4. 級数の収束・発散の例.
 - ullet $\sum_{n=1}^\infty x^n$ は |x|<1 で絶対収束 $\left(=rac{1}{1-x}
 ight)$ 、 $|x|\geq 1$ で発散
 - $\sum_{s=0}^{\infty} \frac{1}{n^s}$ は s>1 で (絶対) 収束、 $s\leq 1$ で発散
 - ullet $\sum_{s=0}^{\infty} rac{1}{n(\log n)^s}$ は s>1 で (絶対) 収束、 $s\leq 1$ で発散
- 3-5. Landau の o-記号,O-記号.
 - $f(x) = o(g(x)) \ (x \longrightarrow a) \iff \frac{f(x)}{g(x)} \longrightarrow 0 \ (x \longrightarrow a)$ $\Longleftrightarrow \forall \varepsilon > 0: \exists \delta > 0: \forall x: 0 < |x-a| < \delta \Longrightarrow |f(x)| < \varepsilon |g(x)|$
 - $f_1(x) = f_2(x) + o(g(x)) \ (x \longrightarrow a) \iff f_1(x) f_2(x) = o(g(x))$
 - $f(x) = O(g(x)) \ (x \longrightarrow a) \iff \frac{f(x)}{g(x)} : \mathbf{AP} \ (x \longrightarrow a)$ $\iff \exists C > 0 : \exists \delta > 0 : \forall x : 0 < |x - a| < \delta \implies |f(x)| < C|g(x)|$
 - $\bullet x \longrightarrow +\infty$ 等に対しても同様。
- 3-6. 関数の"強さ".
 - a < b に対し $x^b = o(x^a) \ (x \longrightarrow 0), \quad x^a = o(x^b) \ (x \longrightarrow +\infty)$
 - $\forall a \in \mathbf{R}, \forall \varepsilon > 0$ に対し $x^a = o(e^{\varepsilon x}) \ (x \longrightarrow +\infty)$
 - $\forall \varepsilon > 0$ に対し $\log x = o(x^{\varepsilon})$ $(x \longrightarrow +\infty)$
 - $\forall \varepsilon > 0$ に対し $\log x = o(x^{-\varepsilon})$ $(x \longrightarrow +0)$
- 3-7. 練習問題.
 - (1) 実数列 $a = (a_n)_{n=0}^{\infty}$ について、
 - (a) a が $n \longrightarrow \infty$ で或る実数 $\alpha \in \mathbf{R}$ に収束するならば、a は有界である。 (b) 級数 $\sum_{n=0}^{\infty} a_n$ が収束するならば、 $n \longrightarrow \infty$ で $a_n \longrightarrow 0$ である。
 - (2) 次の級数の収束・発散を判定せよ。

(a)
$$\sum_{n=0}^{\infty} \frac{n^{2017}}{2^n}$$
 (b) $\sum_{n=2}^{\infty} \frac{1}{\sqrt{n}(\log n)^{2017}}$ (c) $\sum_{n=0}^{\infty} (-1)^n$ (d) $\sum_{n=0}^{\infty} \sin n$

- (3) 実数 $a\in \mathbf{R}$ に対し、関数 $rac{x^u}{
 ho^x}$ の $x\longrightarrow +\infty$ での極限を考える。
 - (a) 任意の自然数 $N \in \mathbb{N}$ に対し、x > 0 において、 $e^x > 1 + x + \frac{x^2}{2} + \frac{x^3}{2!} + \dots + \frac{x^N}{N!}$ であることを示せ。(ヒント:帰納法と増減表)
 - (b) $a \in \mathbf{R}$ に対し、a < N となる自然数 $N \in \mathbf{N}$ を取ることにより、 $\frac{x^a}{a^x} \longrightarrow 0$ $(x \longrightarrow +\infty)$ を示せ。
- (4) 実数 $a\in \mathbf{R}$ に対し、数列 $(rac{n^a}{e^n})$ の $n\longrightarrow\infty$ での極限を考える。
 - (a) 充分大きな自然数 $n\in {m N}$ に対し(即ち、或る自然数 $N\in {m N}$ が存在して、 $n \geq N$ なる任意の自然数 n に対し) x>0 において、 $\left(rac{n+1}{n}
 ight)^a < rac{e}{2}$ とな る(何故か?)。このことを用いて、或る定数 C>0 が存在して、充分大き な自然数 $n \in \mathbf{N}$ に対し、 $rac{n^a}{e^n} < C \left(rac{1}{2}
 ight)^n$ であることを示せ。
 - (b) これより、 $rac{n^a}{e^n}\longrightarrow 0\;(n\longrightarrow\infty)$ を示せ。(更に強く、 $\sum^\inftyrac{n^a}{e^n}$ が収束すること も判る。)
- (5) 上2問のどちらか一方の結果を用いて、他方の結果を示してみよ。