6. 定積分の基礎づけと計算 (07/04)

有界閉区間 I=[a,b] で定義された有界な関数 f に対し、定積分 $\int_{\mathcal{X}}f(x)dx=\int_{\mathcal{X}}^{b}f(x)dx$ を次で定義する:

• 区間 I の分割 $\Delta : a = x_0 < x_1 < x_2 < \dots < x_n = b$ に対し、

* $I_i := [x_{i-1}, x_i]$:各小区間、 $|I_i| := x_i - x_{i-1}$:区間幅

*
$$m_i := \inf_{x \in I_i} f(x), M_i := \sup_{x \in I_i} f(x)$$
 : 区間 I_i に於ける f の下限・上限

$$\star$$
 $s_{\Delta}:=\sum_{i=1}^n m_i|I_i|, S_{\Delta}:=\sum_{i=1}^n M_i|I_i|$:分割 Δ に関する上下からの見積もり

• $s := \sup_{\Delta} s_{\Delta}$:下積分、 $S := \inf_{\Delta} s_{\Delta} : 上積分$

$$ullet$$
 $s=S$ のとき、 f は I で積分可能といい、 $s=S=:\int_I f(x)dx$ と書く。

6-54A. 閉区間 I=[0,2] で定義された関数

$$f(x) = \begin{cases} 1 & (x = 1 \text{ のとき}) \\ 0 & (それ以外) \end{cases}$$

を考える。区間 I の分割 $\Delta:0=x_0 < x_1 < x_2 < \cdots < x_n=2$ に対し、各 I_i は f(x)=0となる点 $x \in I_i$ を含むので、 $m_i = 0$ であり、従って、 $s_{\Delta} = 0$ である。これより、下積 分は s=0 である。一方、x=1 を含む小区間 $I_k=[x_{k-1},x_k]$ については、 $M_k=1>0$ であり、従って、 $S_{\Delta}=|I_k|>0$ である。f が I で積分可能であることを言うには、上積 分 S=0 であること、即ち、任意の $\varepsilon>0$ に対し、 $S_\Delta \leq \varepsilon$ なる分割 Δ が存在すること を言わなくてはならない。

与えられた任意の $\varepsilon>0$ に対し、 $S_{\Delta}\leq \varepsilon$ なる分割 $\Delta=\Delta_{\varepsilon}$ を実際に与えることによっ て、このことを示せ。

6-55B. I = [0,3] で定義された関数

$$f(x) = \begin{cases} 1 & (x = 1 \text{ のとき}) \\ 2 & (x = 2 \text{ のとき}) \\ 0 & (それ以外) \end{cases}$$

を考える。上問と同様に、与えられた任意の arepsilon>0 に対し、 $S_\Delta \le arepsilon$ なる分割 $\Delta=\Delta_arepsilon$ を 具体的に与えることによって、f が I で積分可能であることを示せ。

6-56C. m を 1 以上の整数とする。I = [0,1] で定義された関数

$$f(x) = \begin{cases} 1 & (x = \frac{k}{m} \ (k = 1, 2, \dots, m-1) \ \mathfrak{O}$$
とき)
$$0 & (それ以外) \end{cases}$$

について、上問と同様にして、f が I で積分可能であることを示せ。

6-57D. 閉区間 I=[0,1] の部分集合 $T\subset I$ に対し、次で定義された I 上の関数 $arphi_T$ をT の特性関数 (charasteristic function) と呼ぶ:

$$\varphi_T(x) = \begin{cases} 1 & (x \in T \text{ のとき}) \\ 0 & (それ以外). \end{cases}$$

以下の T について、その特性関数 φ_T は I で積分可能であるか?

$$\begin{array}{l} (1) \ T = \left[0,\frac{1}{2}\right) = \left\{x \in \boldsymbol{R} \middle| 0 \leq x < \frac{1}{2}\right\} \\ (2) \ T = I \cap \boldsymbol{Q} \ (\, \boldsymbol{Q} \ \texttt{は有理数全体の集合}\,) \end{array}$$

$$(3) T = \left\{ \frac{1}{n} \middle| n : 正整数 \right\}$$

(3) $T = \left\{ \frac{1}{n} \middle| n :$ 正整数 $\right\}$ (4) $T = \left\{ x \in I \middle| x$ の三進小数展開に1 が現れない $\right\}$

6-58A. a < c < b とし、閉区間 [a,b] で定義された関数 f について、f は [a,b] で有 界であるとする。従って、[a,c],[c,b] でも有界であり、それぞれの区間における下積分が 存在する。区間を明示して、[a,b] (resp. [a,c], [c,b]) における f の下積分を s(a,b) (resp. s(a,c),s(c,b)) と書くことにする。s(a,b)=s(a,c)+s(c,b) であることを示したい。それ には、s(a,b) の定義により、s(a,c)+s(c,b) が $X:=\{s_{\Lambda}|\Delta:[a,b]$ の分割 $\}$ の上限 (最小 上界)であることを示せば良い。

- (1) s(a,c)+s(c,b) が X の上界であること、即ち、[a,b] の任意の分割 Δ に対し、 $s(a,c)+s(c,b) \geq s_{\Delta}$ であることを示せ。(ヒント: 必要なら c を分点に加えた分割 $\stackrel{\frown}{\Delta}$ を考え、それが定める [a,c],[c,b] の分割をそれぞれ Δ_1,Δ_2 とする。 $s_{\Delta_1}+s_{\Delta_2}=$ $s_{\tilde{\lambda}} \geq s_{\Delta}$ であることと、s(a,c), s(c,b) の上界性を用いよ。)
- (2) s(a,c) + s(c,b) が X の上界のうち最小であること、即ち、任意の $\varepsilon > 0$ に対し、 s(a,c)+s(c,b)-arepsilon が X の上界でないことを示せ。(ヒント:[a,b] の分割 Δ で $s_{\Delta} > s(a,c) + s(c,b) - \varepsilon$ となるものの存在を示す。s(a,c), s(c,b) の上界としての 最小性を用いよ。)

6-59B. 上問の状況で、同様にして、上積分についての等式 S(a,b) = S(a,c) + S(c,b)であることを示せ。即ち、 $Y:=\{S_\Delta|\Delta:[a,b]$ の分割 $\}$ とするとき、

- (1) S(a,c) + S(c,b) が Y の下界であることを示せ。
- (2) S(a,c) + S(c,b) が Y の下界のうち最大であることを示せ。

6-60C. 上 2 問を用いて、f が [a,c],[c,b] で共に積分可能であることと、f が [a,b] で 積分可能であることとが同値であることを示せ。

6-61C. 有界閉区間 I=[a,b] で定義された有界な関数 f,g が、 $\forall x \in I: f(x) \leq g(x)$ を満たすとする。

- $(1)\inf_{x\in I}f(x)\leq\inf_{x\in I}g(x)$ であることを示せ。(ヒント: $\inf_{x\in I}f(x)$ が g(x) の下界であることを示せば、下界の中での $\inf_{x\in I}g(x)$ の最大性から従う。)
- (2) 区間 I の分割 $\Delta: a=x_0 < x_1 < x_2 < \cdots < x_n=b$ に対し、f,g に対して上問 のように定めた s_{Δ} を、関数を明記してそれぞれ $s_{\Delta}(f), s_{\Delta}(g)$ と書くことにする。 このとき、 $s_{\Delta}(f) \leq s_{\Delta}(g)$ であることを示せ。(ヒント: 各小区間 $I_i = [x_{i-1}, x_i]$ に ついて、前小問を適用せよ。)
- (3) 各関数の下積分 s(f), s(g) について、 $s(f) \leq s(g)$ であることを示せ。(ヒント: s(g) が $s_{\Delta}(f)$ の上界であることを示せば、上界の中での s(f) の最小性から従う。)
- (4) f,g が共に I で積分可能であれば、 $\int_I f(x) dx \leq \int_I g(x) dx$ であることを示せ。(ヒ ント:上積分についても同様に考えて、併せよ。)

以下の問題では、微分積分学の基本定理を用いて、「不定積分 = 原始関数」「定積分 = 原始関数の区間両端での値の差」として(即ち、今までに馴染みの計算法に従って)考え て良い。

6-62A. 非負整数
$$m,n$$
 に対し、 $\int_0^{2\pi} \cos mx \cos nx \ dx$ を求めよ。

6-62A. 非負整数
$$m,n$$
 に対し、 $\int_0^{2\pi} \cos mx \cos nx \, dx$ を求めよ。
6-63B. 非負整数 m,n に対し、 $\int_0^{2\pi} \sin mx \sin nx \, dx$, $\int_0^{2\pi} \cos mx \sin nx \, dx$ を求めよ。

6-64A. 次の極限は?

(1)
$$\lim_{M \to +\infty} \int_{1}^{M} \frac{1}{\sqrt{x}} dx$$
 (2) $\lim_{\varepsilon \to +0} \int_{\varepsilon}^{1} \frac{1}{\sqrt{x}} dx$

(1)
$$\lim_{M \to +\infty} \int_{1}^{M} \frac{1}{x^{2}} dx$$
 (2)
$$\lim_{\varepsilon \to +0} \int_{\varepsilon}^{1} \frac{1}{x^{2}} dx$$

6-66B. 次の極限は?
$$(1)\lim_{M\to +\infty}\int_0^M e^{-x}dx \qquad \qquad (2)\lim_{\varepsilon\to +0}\int_\varepsilon^1 \log xdx$$
 (2) のヒント: $\lim_{x\to +0}x\log x=0$ を用いよ。)
$$-2019$$
 年度春期 数学演習 I (担当:角皆・中筋)