2019年度春期 数学 BI (微分積分)[情報理工学科クラス](担当:角皆)

学生番号:______ 氏名:_____

- 2 (ε - δ 流の連続性に関する証明・Taylor 展開の利用と計算)
- (1) 関数 f,g が共に x=a で連続であるとき、

$$(f+g)(x) := f(x) + g(x)$$

で定まる関数 f+g (関数 f と g との和) も x=a で連続であることを示せ。 (意欲のある者は、この代わりに、(fg)(x):=f(x)g(x) で定まる関数 fg (関数 f と g との積) に関して同様のことを示してみよ。)

- (2) $f(x) = \sin x$ の Taylor 展開を利用して、
 - (a) 極限 $\lim_{x\to 0} \frac{\sin x x}{x^3}$ を求めよ。

(b) sin 1 の近似値を小数第 6 位まで求めよ。(念の為の注:1° ではなく 1rad)

(3) 次の関数の Taylor 展開を求めよ。 (a) $e^{x+x^2} = \exp(x+x^2)$

(a)
$$e^{x+x^2} = \exp(x+x^2)$$

(b) $\cos x \sin x$

(c)
$$\frac{1}{1-x-x^2}$$

(d)
$$\log(1 - x - x^2)$$