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Abstract

The Anderson transition is a disorder driven quantum phase transition between metallic and

insulating phases. In contrast to the common belief that two dimensional (2D) systems are

always insulating and that the Anderson transition does not occur in 2D, in certain universality

classes 2D systems can be metallic. We review the recent development of the theory of the

Anderson transition in 2D. There are ten universality classes: three Wigner-Dyson classes, three

chiral universality classes, and four Bogoliubov-de Gennes classes. We report results for critical

exponents and distributions of conductance for the symplectic universality class. We emphasize

that, on the one hand, the existence of a topological insulating phase does not alter the value

of the critical exponent, while on the other, it strongly affects the form of the conductance

distribution at the transition.
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INTRODUCTION

In systems with a periodic potential, the wave functions of electrons are extended con-

sistent with Bloch’s theorem. In strongly disordered systems, however, due to destructive

quantum interference, the envelope of the electron wave functions decays exponentially

on a length scale called the localization length ξ,

ψ(~r) = a(~r − ~r0) exp(−|~r − ~r0|/ξ) . (1)

Here, ~r0 is the localization center and a is a random function with a decay that is weaker

than exponential. As a function of disorder, a localization-delocalization transition, called

the Anderson transition [1], occurs. This transition is characterized by the divergence of

the localization length ξ,

ξ ∼ 1

|x− xc|ν
, (2)

where x is a parameter such as Fermi energy E or the strength of the random potential

W that is used to drive the transition, and ν is the critical exponent. (In the metallic

phase, ξ is again finite but is there interpreted as a correlation length.) The value of the

exponent ν is thought to be highly universal depending only on the universality class and

the dimension (1D, 2D, 3D etc.) of the system.

The transition has been widely studied analytically [2], numerically [3], and experi-

mentally [4], not only in semiconductors, but also in optical [5] and acoustic systems [6].

The recent development of experimental techniques that utilize Bose-Einstein condensa-

tion has shed new light on the Anderson transition [7]. In this report, we describe the

classification into universality classes, and report recent numerical results for one of the

universality classes, the symplectic universality class, as an example.

UNIVERSALITY CLASSES

Random Hamiltonian matrices are classified according to whether the system is in-

variant under the operations of time reversal T and spin rotation S. Systems with both

time reversal and spin rotation symmetries comprise the orthogonal class, systems with

time reversal symmetry but with broken spin rotation symmetry comprise the symplectic

class, and systems with broken time reversal symmetry comprise the unitary class. (Once
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T S Symmetry class

Yes Yes Orthogonal

Yes No Symplectic

No not relevant Unitary

TABLE I: Wigner-Dyson classes and symmetry

time reversal symmetry is broken, spin rotation symmetry is no longer relevant). These

are called Wigner-Dyson classes [8, 9]. See Table I.

Recently, it has been found necessary to extend the Wigner-Dyson classification [10–

12] to describe a wider variety of random systems such as disordered superconductors.

The new classification is based on Lie algebra.

Let H be an N × N Hermitian matrix and let X = iH. Then, X is anti-Hermitian.

Such matrices X are elements of the Lie algebra u(N), and exp(X) elements of the Lie

group U(N). This is the unitary class in the Wigner-Dyson classification. In the absence of

time reversal symmetry (or any other special symmetries) the Hamiltonian of a disordered

system is in this class.

Any Hermitian matrix can be decomposed as H = H1 + iH2, where H1 is a real

symmetric matrix and H2 a real antisymmetric matrix. The matrices H2 are the elements

of a Lie algebra that is a subalgebra of u(N). The corresponding Lie group is SO(N),

which is a subgroup of U(N). The tangent space to the symmetric space U(N)/O(N)

is the space of real symmetric matrices (up to a factor i). The Hamiltonians of systems

with time reversal and spin rotation symmetry are of this form. This is the orthogonal

class in the Wigner-Dyson classification.

When the electron spin degree is included in the description, the number of degrees

of freedom is doubled and the Hamiltonian is a 2N × 2N Hermitian matrix. We may

decompose the Hamiltonian into 2 × 2 blocks cij containing matrix elements between up

and down spin states and express each block in the form

cij = (a0
ij + ib0ij)τ0 + (a1

ij + ib1ij)τ1 + (a2
ij + ib2ij)τ2 + (a3

ij + ib3ij)τ3 . (3)

Here, τ0 = 12 the 2 × 2 identity matrix, τk = iσk (k = 1, 2, 3), where the σk are the Pauli

matrices, and ak
ij, b

k
ij (k = 0, 1, 2, 3) are real numbers. Since the Hamiltonian is Hermitian,
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the coefficients ai,j and bi,j must satisfy the following conditions

a0
ij = a0

ji , a
k
ij = −ak

ji (k = 1, 2, 3) , b0ij = −b0ji , bkij = bkji (k = 1, 2, 3) . (4)

Using (3) a general Hamiltonian may be decomposed into H = H1 + H2 where H1 is a

matrix with cij of the form

cij = a0
ijτ0 + a1

ijτ1 + a2
ijτ2 + a3

ijτ3 , (5)

and H2 is the remainder, i.e. involving the bkij (k = 0, 1, 2, 3). We may define X = iH2.

The matrices X satisfy

JX +XTJ = 0 , Jij = δijτ2 , (6)

and are the elements of a Lie algebra that is a subalgebra of u(2N). The corresponding Lie

group is Sp(2N). The tangent space to the symmetric space U(2N)/Sp(2N) is the space of

matrices H1 (up to a factor i). The Hamiltonians of systems with time reversal symmetry

but where spin rotation symmetry is broken are of precisely this form. (Incidentally, this

means that the Hamiltonians of such systems can be expressed as N × N matrices of

quaternions, which can simplify both analytic and numerical calculations.) This is the

symplectic class in the Wigner-Dyson classification.

In certain physical problems in disordered systems we encounter Hamiltonians of the

form

H =

 0N h

h† 0M

 . (7)

Here, 0N denotes the N × N zero matrix, and h an N ×M matrix. This describes the

situation where the diagonal elements (potential energies) are vanishing and hopping is

allowed only between different sublattices. Such a Hamiltonian satisfies

H = −

1N 0

0 −1M

H

1N 0

0 −1M

 . (8)

This property is called chiral symmetry [10, 11]. We may decompose a general (N +M)×

(N +M) Hamiltonian into the form H = H1 +H2 where H1 has the form (7) and H2 is

the remainder, which has the form

H2 =

 hN 0

0 hM

 . (9)
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Class T S Symmetric space Symbol

Wigner-Dyson Yes Yes U(N)/O(N) AI

Wigner-Dyson Yes No U(2N)/Sp(2N) AII

Wigner-Dyson No irrlevant U(N) A

chiral Yes Yes SO(N + M)/(SO(N) × SO(M)) BDI

chiral Yes No Sp(2N + 2M)/(Sp(2N) × Sp(2M)) CII

chiral No irrelevant U(N + M)/(U(N) × U(M)) AIII

BdG Yes Yes Sp(2N)/U(N) CI

BdG Yes No SO(2N)/U(N) DIII

BdG No Yes Sp(2N) C

BdG No No SO(2N) D

TABLE II: Ten universality classes and corresponding Lie group (symmetric spaces). The last

column is the symbol for the symmetry class.

We may then define X = iH2. The matrices X are the elements of a Lie algebra with

corresponding Lie group U(N)×U(M). The tangent space of the symmetric space U(N+

M)/(U(N) × U(M)) are precisely the Hamiltonians of the form (7) (up to a factor i).

In disordered superconductors, quasi-particles are described by a Bogoliubov-de

Gennes (BdG) Hamiltonian of the form [12],

H =

 h ∆

−∆∗ −hT

 , (10)

which satisfies

H = −

 0N 1N

1N 0N

HT

 0N 1N

1N 0N

 = −τxHTτx , (11)

where 1N , 0N are N -dimensional unit and zero matrices, respectively. By a unitary rota-

tion of the basis we may define H ′ = g†Hg , g = (12N + iτx)/
√

2 that satisfies H ′ = −H ′T.

We may then define matrices X = iH ′. The matrices are elements of a Lie algebra so(2N)

with the corresponding Lie group SO(2N).

By imposing time reversal and spin rotation symmetries, in addition to the chiral or

BdG symmetries, we arrive at the ten universality classes listed in Table II.

Random Hamiltonians can be mapped to non-linear sigma models [2, 13]. Reflecting
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the symmetries of the Hamiltonian, the non-linear sigma models are associated with

different symmetric spaces. More details can be found in review articles such as [14–16].

ANDERSON TRANSITION IN TWO DIMENSIONS

The scaling theory of localization [17] predicts that all states are localized in 2D. The

argument rests on two assumptions. First, that the conductance g (in units of e2/h) of a

system of size L obeys a single parameter scaling law

β(g) =
d log g(L)

d logL
. (12)

And, second, that this β-function is monotonic. For a d-dimensional system, perturbation

theory in 1/g gives β(g) ≈ d − 2 − a/g for large g. While for small g, where g(L) ∼

exp(−bL/ξ), we expect log(g). (Here, a, b are numerical factors of the order of 1.) If we

interpolate the beta function between large and small g, assuming it to be monotonic, we

find that β(g) < 0 for all g, and hence that the conductance always vanishes in the limit

of large L.

However, this argument applies only to the Wigner-Dyson orthogonal class and, in

fact, this is the only symmetry class where in 2D the states are always localized and g(L)

scales to zero. All the remaining universality classes listed in Table II permit the existence

of delocalized states in 2D.

Wigner-Dyson symplectic class

The Wigner-Dyson symplectic class is realized in systems with spin-orbit scattering,

which conserves time reversal symmetry but breaks spin rotation symmetry. One of the

model Hamiltonians used in the study of this class is the so called SU(2) model [18],

H =
∑
i,σ

εic
†
iσciσ −

∑
(i,j)σ,σ′

R(i, j)σ,σ′c†iσcjσ′ , (13)

with i, j the site indices, σ, σ′ the spin indices, (i, j) pairs of nearest neighboring sites, and

R(i, j) a random SU(2) matrix uniformly distributed with respect to the group invariant

measure. The on-site random potential εi is uniformly distributed in the range

−W
2
< εi <

W

2
. (14)
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In contrast to other models, where corrections to scaling need to be taken into account [19],

the SU(2) model in 2D exhibits vanishingly small corrections to scaling. This property

enables high precision finite size scaling analyses of the Lyapunov exponent [3, 20]. The

critical exponent ν for SU(2) model has been found to be [18, 21],

ν = 2.75 ± 0.01 . (15)

At the transition, where the length scale ξ diverges, the correlation function of the

local density of states ρ(E,~r) has a power law decay

〈ρ(E,~r)ρ(E,~r ′)〉 ∼ |~r − ~r ′|−2η , (16)

while in a quasi-1D system it has an exponential decay,

〈ρ(E,~r)ρ(E,~r ′)〉q1D ∼ exp(−2|~r − ~r ′|/ξq1D) . (17)

It follows from the assumption of conformal invariance at the critical point that these

decays are related by [22, 23]
ξq1D

L
=

1

πη
, (18)

with L the width of quasi-1D strip. In numerical simulations of the Anderson transition,

the finite size scaling analysis of the Lyapunov exponent λ, which is estimated using the

transfer matrix method [3, 20, 24], has proved to be the most powerful and precise ap-

proach. For the Lyapunov exponent it has been claimed [25, 26] that conformal invariance

implies a different relation of the form

λL = π(α0 − 2) , (19)

with α0 the position of the maximum of the multifractal spectrum f(α) of the distribution

of the wave function (for a review, see for example [16]). There is strong numerical

evidence in support of this relation [18, 27]. This suggests that the critical point in the

symplectic class has conformal symmetry.

Z2 topological phase

In some systems in the Wigner-Dyson symplectic class, there appear edge states in

the insulating phase that are stable against perturbations that preserve time reversal
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FIG. 1: The product of the second smallest positive Lyapunov exponent and the system size

versus energy for the Z2 network model near the metal-topological insulator transition. The

lines are a finite size scaling fit, with different lines corresponding to different system sizes. The

critical exponent, ν = 2.77 ± 0.06 [30], is consistent with (15).

symmetry. Such edge states carry current, resulting in quantized conductance 2e2/h,

which is observed experimentally [28]. If there are even numbers of edge states at one

edge of a system, they are mixed and back scattered, resulting in vanishing conductance.

On the other hand, in the case of an odd number of edge states, one edge state survives

and the conductance is again 2e2/h. This insulating phase is called the Z2 topological

insulator.

The critical exponent of the metal-topological insulator transition was conjectured to

be the same as for the ordinary metal-insulator transition [29] and this has recently been

confirmed by an analysis of the second smallest Lyapunov exponent [30] (Fig 1).

In disordered systems, the conductance is a statistical quantity and not the value but

the distribution of conductance is important. (In this sense, the conductance that appears

in the β-function should be regarded as a suitable average.) The distribution function,

P (g) should obey the scaling form [31],

P (g) = f(g, L/ξ) . (20)

At the Anderson transition ξ → ∞, the distribution becomes system size independent.

This size independent distribution is called the critical conductance distribution and is

denoted by Pc(g). It has been demonstrated that Pc(g) is universal, i.e. model indepen-

dent (see, for example, [32]). However, the form of this universal distribution has been

found to be different depending on whether the adjacent insulating phase is a topological

insulator or not [32] (Fig. 2).
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FIG. 2: Critical conductance distributions at the metal-ordinary insulator (M-OI) transition

and at the metal-Z2 topological insulator (M-TI) transition. The distributions shown are for

the Z2 network model (solid lines) and the SU(2) model (×). See [32] for details.

DISCUSSION

The properties of the Anderson transition in 2D systems in the Wigner-Dyson symplec-

tic class (multifractal distribution of the wave function amplitude, conformal invariance

of the critical theory, universality of the conductance distribution etc.) are conjectured

to apply also to other universality classes. The most important case is the unitary class

where the Anderson transition is the quantum Hall transition [33]. The quantum Hall

insulator is a Z topological insulator, where the current is carried by an integer number of

edge states. Confirmation of conformal invariance, however, is still pending. The central

difficulty is that corrections to scaling vanish only very gradually with increasing system

size [34]. Further efforts, both numerical as well as analytic, will be needed to understand

the quantum Hall transition quantitatively.

[1] P. Anderson, Phys. Rev., 109, 1492 (1958).

[2] K. Efetov, Supersymmetry in disorder and chaos (Cambridge Univ. Press, 1997).

[3] B. Kramer, A. MacKinnon, Rep. Prog. Phys., 56, 1469 (1993).

[4] K. Itoh et al., J. Phys. Soc. Jpn., 73, 173 (2004).

[5] S. John, Phys. Today, 44, 32 (1991).

[6] S. Faez, A. Strybulevych, J.H. Page, Ad Lagendijk, B.A. van Tiggelen, Phys. Rev. Lett.,

103, 155703 (2009).

[7] J. Chabe et al., Phys. Rev. Lett., 101, 255702 (2008).



10

[8] E.P. Wigner, Proc. Cambridge Philos. Soc., 47, 790 (1951).

[9] F.J. Dyson, J. Math. Phys., 3, 140,157,166 (1962).

[10] R. Gade, F. Wegner, Nuclear Physics B, 360, 213 (1991).

[11] R. Gade, Nuclear Physics B, 398, 499 (1993).

[12] A. Altland, M.R. Zirnbauer, Phys. Rev. B, 55, 1142 (1997).

[13] S. Hikami, Phys. Rev. B, 24, 2671 (1981).

[14] M.R. Zirnbauer, arXiv:math-ph/9808012.

[15] B. Kramer, T. Ohtsuki, S. Kettemann, Phys. Rep., 417, 211 (2005).

[16] F. Evers, A.D. Mirlin, Rev. Mod. Phys., 80, 1355 (2008).

[17] E. Abrahams et al., Phys. Rev. Lett., 42, 673 (1979).

[18] Y. Asada, K. Slevin, T. Ohtsuki, Phys. Rev. Lett., 89, 256601 (2002).

[19] K. Slevin, T. Ohtsuki, Phys. Rev. Lett., 82, 382 (1999).

[20] A. MacKinnon, B. Kramer, Z. Phys., B53, 1 (1983).

[21] Y. Asada, K. Slevin, T. Ohtsuki, Phys. Rev. B, 70, 035115 (2004).

[22] J.L. Cardy, J. Phys. A, 17, L385 (1984).

[23] J. Cardy, Scaling and Renormalization in Statistical Physics (Cambridge University Press,

1996).

[24] J-L. Pichard, G. Sarma, J. Phys. C, 14, L127 (1981).

[25] A. Dohmen, P. Freche, M. Janssen, Phys. Rev. Lett., 76, 4207 (1996).

[26] M. Janssen, Phys. Rep., 295, 1 (1998).

[27] H. Obuse, R. Subramaniam, A. Furusaki, I. A. Gruzberg, A.W.W. Ludwig, Phys. Rev.

Lett., 98, 156802 (2007).

[28] M. König et al., Science, 318, 766 (2007).

[29] H. Obuse, A. Furusaki, S. Ryu, C. Mudry, Phys. Rev. B, 76, 075301 (2007).

[30] K. Kobayashi, T. Ohtsuki, K. Slevin, unpublished.

[31] B. Shapiro, Phys. Rev. Lett., 65, 1510 (1990).

[32] K. Kobayashi, T. Ohtsuki, H. Obuse, K. Slevin, Phys. Rev. B, 82, 165301 (2010).

[33] M. P. K. von Klitzing, G. Dorda, Phys. Rev. Lett., 45, 494 (1980).

[34] K. Slevin, T. Ohtsuki, Phys. Rev. B, 80, 041304(R) (2009).


