
Clarification of Nonadiabatic Chemical Dynamics
by the Zhu-Nakamura Theory of Nonadiabatic

Transition: From Tri-atomic Systems
to Reactions in Solutions

Toshimasa Ishida1), Shinkoh Nanbu2) ∗, and Hiroki Nakamura3) †

1)Department of Chemistry, University of Malaya, 50603,
Kuala Lumpur, Malaysia.

e-mail: ishida@fukui.kyoto-u.ac.jp
2)Department of Materials and Life Sciences,

Faculty of Science and Technology, Sophia University,
7-1 Kioi-cho, Chiyoda-ku, Tokyo, 102-8554, Japan.

e-mail: shinkoh.nanbu@sophia.ac.jp
3)Institute for Molecular Science,

National Institutes of Natural Sciences,
Myodaiji, Okazaki 444-8585, Japan.
e-mail: nakamura@kba.biglobe.ne.jp

23/Feb./2017

Abstract

It is now confirmed that the Zhu-Nakamura (ZN) theory of nonadiabatic
transition is useful to investigate various nonadiabatic chemical dynamics.
The theory, being one-dimensional, presents a whole set of analytical formu-
las that enables us to treat the dynamics efficiently. It is also quite significant
that classically forbidden transitions can be dealt with analytically. The the-
ory can be combined with the trajectory surface hopping (TSH) method (ZN-
TSH) and is demonstrated to be useful to clarify the dynamics of not only
simple tri-atomic reactions but also large chemical systems. The whole set
of analytical formulas directly applicable to practical systems is summarized
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and the applications to polyatomic systems are illustrated. Examples of poly-
atomic molecules are H2SO4, NH3, indolylmaleimide, cyclohexadiene (CHD),
and retinal. The Fortran code for the whole set of Zhu-Nakamura formulas is
provided in Appendix for the convenience of a reader who is interested in using
them. The ZN-TSH method can be combined with the QM/MM method to
clarify reaction dynamics in the surrounding environment. This is named as
ZN-QM/MM-TSH. The particle-mesh Ewald (PME) method can also be com-
bined with ZN-TSH to clarify reaction dynamics in solutions. This is named
as ZN-PME-TSH. Formulations of these methods are presented together with
practical applications. Examples treated by ZN-QM/MM-TSH are photoiso-
merization dynamics of retinal chromophore embedded in the protein envi-
ronment. The differences in the isomerization mechanisms between rhodopsin
and isorhodopsin are made clear. The faster and more efficient isomerization
of rhodopsin compared to isorhodopsin is nicely reproduced. Examples of
reactions in solutions are photoisomerizations of retinal and CHD. The exper-
imentally observed long life time of the excited state of retinal is reproduced
and is found to be due to the long-range solvation effect. The solvent de-
pendent branching ratios of CHD:hexatriene(HT) are clarified for the ethanol
and hexane solvents by the ZN-PME-TSH method. Both ZN-QM/MM-TSH
and ZN-PME-TSH are thus demonstrated to be promising methods to deal
with a wide range of nonadiabatic dynamics in large chemical and biological
systems.

1. Introduction

It is well known now that a variety of chemical dynamic processes, for instance
photo-chemical processes such as photo-isomerization, proceed through conical in-
tersections (CI) of potential energy surfaces[1]. The transition at CI is nothing
but nonadiabatic transition between adiabatic potential energy surfaces[2]. The
significance of nonadiabatic chemical dynamics is well recognized and the field is
expected to be further developed[3]. For instance, various molecular functions such
as photochromism[4], molecular switch[2, 5] and molecular machine[6, 7] may be
controlled by the nonadiabatic transition. The concept of ”nonadiabatic transi-
tion” is actually very general and plays crucial roles not only in chemistry but also
in physics, biology and other fields[2]. Examples are nuclear reactions[8, 9], sur-
face physics [10], solid state physics[11], tunnel junctions[12, 13, 14], quantum dots
[15, 16, 17, 18], solar cell[19], neutrino conversion [20, 21], photosynthesis[22, 23]
and various biological processes[24, 25].

Because of the importance of the transition, there have been developed many
analytical theories [2, 26, 27, 28, 29] since the pioneering works done by Landau[30],
Zener[31] and Stückelberg[32]. There are time-dependent and time-independent
versions in which the latter one is more difficult to formulate and relevant to chemical
processes[2]. Zhu and Nakamura formulated a theory (ZN theory) which provides a
whole set of analytical formulas not only for the transition probabilities but also for
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the phases induced by the transition[2, 33]. There are two types of potential curve
crossings: one is Landau-Zener type (see Fig.1) in which two diabatic potentials
cross with the same sign of slopes and the other is nonadiabatic tunnel type (see
Fig.2) in which two diabatic potentials cross with opposite signs of slopes and a
potential barrier is created. The ZN theory not only largely improves the famous
Landau-Zener formula in the classically allowed region (energy ≥ crossing energy),
but also provides the analytical formulas for the classically forbidden transitions,
covering the whole range of energy. It should be noted that the classically forbidden
transitions are not negligible at all. The whole expressions can be evaluated with
use of the knowledge of adiabatic potentials and no diabatization is needed. This is
very convenient, because quantum chemical ab initio computations provide adiabatic
potentials uniquely and diabatization procedure cannot be unique.

Since real chemical processes proceed, naturally, in a multi-dimensional space of
nuclear coordinates, the classical or the semiclassical mechanics is usually employed
to describe nuclear motions, while quantum mechanical, i.e., quantum chemical,
methods are used for electronic structure computations. The full quantum mechan-
ical treatment such as the wave packet propagation method or multi-channel time-
dependent Hartree (MCTDH) method has been devised and successfully applied to
various processes[34], but it would be a formidable task for real high dimensional
chemical and biological systems, including accurate ab initio computations of global
potential energy surfaces. The idea of surface hopping based on classical trajec-
tories of nuclear motion is usually employed[35, 36]. The fewest switches surface
hopping (FSSH) method proposed by Tully[37] has been widely used with various
modifications[38, 39, 40, 41]. Basically, the time-dependent coupled equations are
solved numerically along classical trajectories with the nonadiabatic coupling em-
ployed as the cause of the nonadiabatic transition. The ZN theory can be combined
with this idea of surface hopping. The nonadiabatic transition is assumed to occur at
the avoided crossing of adiabatic potential energy curves in the direction of nonadia-
batic coupling vector and thus the decoherence problem[41] does not arise. Besides,
classically forbidden transitions can be treated, as mentioned above, which is not
possible by other available semiclassical methods based on classical trajectories. The
quantum chemical ab initio computations of potential energy surfaces of high quality
can be carried out on-the-fly. Furthermore, the method can be combined with the
QM/MM method or the particle-mesh Ewald summation method to treat large scale
systems such as photo-isomerization of retinal in protein environment and reactions
in solutions.

This review article is organized as follows: the next section summarizes the whole
set of ZN formulas directly applicable to practical systems. One numerical example
is presented for one-dimensional model potentials to demonstrate how the theory
works well even for classically forbidden transitions. The Fortran code for the for-
mulas is provided in Appendix for the convenience of the reader who is interested in
applying the ZN formulas. In Section 3 various methods to treat chemical dynam-
ics with use of the ZN formulas are explained. The first one is the Zhu-Nakamura
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trajectory surface hopping (ZN-TSH) method by which the over-all reaction prob-
ability is calculated from the ratio between the number of reactive trajectories and
the total number of trajectories. The effects of phases are not taken into account in
this treatment. The second one is the Herman-Kluk type semiclassical initial value
representation method[42, 43, 44] with use of the ZN formulas (ZN-HKSCIVR), in
which the phases are incorporated. This is appropriate for evaluating transition
probability amplitude and absorption spectrum. In the third subsection a method
to evaluate reaction rate constant of nonadiabatic dynamics is presented. Especially,
the simple rate constant expression that improves the famous Marcus formula for
electron transfer is provided. The last subsection describes how to treat the ef-
fects of environment. Namely, the combinations of the ZN theory with QM/MM
and particle-mesh Ewald summation methods are discussed. In Section 4 numerical
applications of the above mentioned methods are presented for various practical pro-
cesses such as chemical reactions and absorption spectrum in tri- and tetra-atomic
systems, reaction rate constant of electron transfer, photochemical dynamics of poly-
atomic molecules, photo-isomerization of retinal in vacuo and in protein environment
and reactions in solutions. Section 5 concludes the paper by discussing future per-
spectives of the field of nonadiabatic chemical dynamics. Semiclassical molecular
dynamics (MD) simulation method can be developed by taking into account not
only nonadiabatic transitions but also quantum mechanical tunneling effects[45].

2. Zhu-Nakamura formulas[2]

A whole set of formulas of the Zhu–Nakamura theory are summarized here. It should
be noted that the theory has the following nice features and can be easily utilized
for various applications:
(1) All the probabilities are expressed in simple analytical forms.
(2) All the phases induced by nonadiabatic transitions are provided in compact
analytical forms.
(3) All the basic parameters can be directly estimated from adiabatic potentials on
the real axis.
This means that (i) no non-unique diabatization procedure is needed, (ii) no complex
calculus is necessary, (iii) no nonadiabatic coupling information is required, and (iv)
the theory works for whole range of energy and coupling strength.
The formulas presented here contain some empirical corrections so that they can
cover practically the whole range of parameters a2 and b2 (see below). Some complex
integrals up to the complex crossing point are simplified. These are explained in
each relevant section.

When the diabatic potentials are available, the two basic dimensionless param-
eters a2(≥ 0) and b2(−∞ < b2 <∞) are defined by

a2 =
h̄2

2µ

F (F1 − F2)

8V 3
X

(2. 1)
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and

b2 = (E − EX)
F1 − F2

2FVX
, (2. 2)

where µ is the mass, Fj (j = 1, 2) is the slope of the j−th diabatic potential with

F =
√
|F1F2|, VX is the diabatic coupling and EX is the energy at the avoided

crossing point (see Eq.(2. 6)). Without loss of generality F1 − F2 is assumed to be
positive. These parameters effectively represent the coupling strength and energy:
a2 ≫ 1, a2 ∼ 1 and a2 ≪ 1 correspond to weak, intermediate, and strong coupling
regime, respectively.

As mentioned above, there are two types of crossings: Landau-Zener type and
nonadiabatic tunneling type.
(A) Landau-Zener case (see Fig.1)
In terms of adiabatic potentials Ej(R)(j = 1, 2) these parameters a2 and b2 can be
estimated directly from them as

a2 =
√
d2 − 1

h̄2

µ(T
(0)
2 − T

(0)
1 )2(E2(R0)− E1(R0))

, (2. 3)

b2 =
√
d2 − 1

E − (E2(R0) + E1(R0))/2

(E2(R0)− E1(R0))/2
, (2. 4)

where

d2 =
[E2(T

(0)
1 )− E1(T

(0)
1 )][E2(T

(0)
2 )− E1(T

(0)
2 )]

[E2(R0)− E1(R0)]2
, (2. 5)

where the position R0 is defined as the minimum separation of the two adiabatic
potentials and EX is defined by

EX = [E1(R0) + E2(R0)]/2 = E1(T
0
1 ) = E2(T

0
2 ). (2. 6)

It should be noted that even when the diabatic potentials are available, it is better to
use above expressions defined in terms of adiabatic potentials, since it is confirmed
that they are more accurate.

(B) Nonadiabatic tunneling case (see Fig.2)
The parameters a2 and b2 originally defined by Eqs.(2. 1) and (2. 2) can be used
when diabatic potentials are available; but these can also be estimated directly from
adiabatic potentials by

a2 =
(1− γ2)h̄2

µ(Rb −Rt)2(Eb − Et)
(2. 7)

and

b2 =
E − (Eb + Et)/2

(Eb − Et)/2
, (2. 8)
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Figure 1: Landau-Zener type potential curve crossing.

where Eb(Et) is the bottom (top) of the upper (lower) adiabatic potential and

γ =
Eb − Et

E2([Rb +Rt]/2)− E1([Rb +Rt]/2)
. (2. 9)

When Rb = Rt, γ = 1 and

a2 =
h̄2

4µ(Eb − Et)

 ∂2E2(R)

∂R2

∣∣∣∣∣
R=Rb

− ∂2E1(R)

∂R2

∣∣∣∣∣
R=Rt

 . (2. 10)

2.1. Classically allowed transition

2.1.1. Landau-Zener case (E ≥ E2(R0))(see Fig.1)

The nonadiabatic transition probability for one passage of the crossing point is given
by

pZN = exp

− π

4a|b|

 2

1 +
√
1 + b−4(0.4a2 + 0.7)

1/2
 . (2. 11)

It should be noted that the Landau-Zener formula is simply given by

pLZ = exp[− π

4a|b|
], (2. 12)
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Figure 2: Nonadiabatic-Tunneling type potential curve crossing.

which goes to zero as |b| → 0. The factor 0.4a2 + 0.7 is originally unity and is
confirmed to be slightly better than unity (see (a) of [33]).

When the phases induced by nonadiabatic transition are needed, the following
transition matrix IX at the avoided crossing point R0 should be used:(

C

D

)
= IX

(
A

B

)
, (2. 13)

where A and B (C and D) are the coefficients of the wave functions at R = R0 + 0
(R = R0 − 0). This matrix gives the transition amplitude at the crossing point and
explicitly defined as

IX =

(√
1− pZNei(ψZN−σZN) −√pZNeiσ

ZN
0

√
pZNe

−iσZN
0

√
1− pZNe−i(ψZN−σZN)

)
, (2. 14)

where
ψZN = σZN + ϕS (2. 15)

with

ϕS = −δψ
π

+
δψ
π

ln

(
δψ
π

)
− arg Γ

(
i
δψ
π

)
− π

4
. (2. 16)

The various parameters are defined as follows:

δψ = δZN(1 +
5a1/2

a1/2 + 0.8
10−σZN) (2. 17)
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and

σZN
0 + iδZN0 ≡

∫ R∗

R0

[K1(R)−K2(R)]dR ≃
√
2π

4a

FC
− + iFC

+

F 2
+ + F 2

−
, (2. 18)

where the final approximate expression is derived by using the linear potential model
and 3-point quadrature (see (i) of [33]),

Kj(R) =

√
2µ

h̄2
(E − Ej(R)), (2. 19)

F± =

√√
(b2 + γ1)2 + γ2 ± (b2 + γ1)

+

√√
(b2 − γ1)2 + γ2 ± (b2 − γ1) , (2. 20)

FC
+ = F+

(
b2 −→

[
b2 − 0.16bx√

b4 + 1

])
, (2. 21)

FC
− = F−

(
γ2 −→

0.45
√
d2

1 + 1.5e2.2bx|bx|0.57

)
(2. 22)

and
bx = b2 − 0.9553, γ1 = 0.9

√
d2 − 1, γ2 = 7

√
d2/16. (2. 23)

The parameters σZN and δZN are given as follows:

σZN =
∫ R0

T1
K1(R)dR−

∫ R0

T2
K2(R)dR + σZN

0 (2. 24)

and
δZN = δZN0 . (2. 25)

The correction factor in Eq.(2. 17) is introduced empirically (see (c) of [33]).

2.1.2. Nonadiabatic tunneling case (E ≥ Eb)(see Fig.2)

The transition probability for one passage of the crossing point is given as

pZN = exp

− π

4ab

 2

1 +
√
1− b−4(0.72− 0.62a1.43)

1/2
 . (2. 26)

The factor 0.72 − 0.6a1.43 is originally unity and is confirmed to be slightly better
than unity (see (b) of [33]). When E ≤ E2(∞), the overall transmission probability
from left to right or vice versa is the physically meaningful quantity and is given by

P12 =
4 cos2(σZN − ϕ̄S)

4 cos2(σZN − ϕ̄S) + (pZN)2/(1− pZN)
, (2. 27)
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where

σZN =
∫ T2

T1
K2(R)dR (2. 28)

with K2(R) defined by Eq.(2. 19),

ϕ̄S = ϕS + h1, (2. 29)

h1 =
0.23a1/2

a1/2 + 0.75
40−σZN , (2. 30)

ϕS = −δZN
π

+
δZN
π

ln(
δZN
π

)− arg Γ(i
δZN
π

)− π

4
, (2. 31)

δZN =
π

16ab

√
6 + 10

√
1− b−4

1 +
√
1− b−4

. (2. 32)

The correction factor h1 is introduced empirically (see (c) of [33]). The expression
of δZN is derived by using the linear potential model (see (d) of [33]). It should
be noted that when ψZN ≡ σZN − ϕ̄S = (n + 1/2)π(n = 0, 1, 2, , , , ), P12 becomes
zero. Namely, the intriguing phenomenon of complete reflection occurs, when this
condition is satisfied.

When the phases are needed, the transition matrix IX at E ≥ Eb defined below
should be used,

IX =

(√
1− pZNeiϕS

√
pZNe

iσZN
0

−√pZNe−iσ
ZN
0
√
1− pZNe−iϕS

)
, (2. 33)

where ϕS is the same as Eq.(2. 31). At E > E2(∞), this IX is used in the same way
as IX in the Landau-Zener case. When the trapping by the upper adiabatic potential
occurs (E ≤ E2(∞)), we have to use the following reduced scattering matrix (SR)
that describes the overall transmission/reflection amplitudes from the entrance to
the exit:

SR =
1

1 + U1U2

(
ei∆11 U2e

i∆12

U2e
i∆12 ei∆22

)
(2. 34)

with
U2 = 2i Im(U1)/(|U1|2 − 1), (2. 35)

where

∆12 = σZN , (2. 36)

∆11 = 2
∫ Rb

T1
K2(R)dR− 2σZN

0 , (2. 37)

∆22 = 2
∫ T2

Rb

K2(R)dR + 2σZN
0 , (2. 38)

σZN
0 =

(
Rb −Rt

2

){
K1(Rt) +K2(Rb) +

1

3

[K1(Rt)−K2(Rb)]
2

K1(Rt) +K2(Rb)

}
, (2. 39)

U1 = i
√
1− pZN exp[i(σZN − ϕ̄S)] (2. 40)

and σZN [ϕS] is given by Eq.(2. 28) [Eq.(2. 31)]. The index of the SR-matrix
corresponds to left or right side of the barrier.
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2.2. Classically forbidden transition

2.2.1. Landau-Zener case (E ≤ E2(R0)) (see Fig.1)

The overall transition probability from the state 1 to state 2 is given by

P12 = 4pZN(1− pZN) sin2(ϕS + σZN
0 ), (2. 41)

where
pZN = [1 +B(σZN/π) exp(2δZN)− g1 sin2(σZN)]

−1, (2. 42)

ϕS and σZN
0 are given by Eq.(2. 16) and Eq.(2. 18),

B(x) =
2πx2xe−2x

xΓ2(x)
(2. 43)

and

g1 =
3σZN
πδZN

ln(1.2 + a2)− 1

a2
. (2. 44)

The parameters σZN and δZN are given below (Eq.(2. 50)-Eq.(2. 53)).
When the phases induced by the transition are needed, the reduced scattering

matrix (SR) which provides the transition amplitude from the turning point on the
entrance adiabatic surface to that on the exit adiabatic surface should be used:

SR = ITX · IX , (2. 45)

where the superscript T means ”transpose” and the transition matrix IX is formally
given by Eq.(2. 14) with the parameters ψZN and σZN

0 replaced by the following
expressions:

ψZN = arg(U), (2. 46)

where

Re U = cos(σZN)

√B(σZN/π)e
δZN − g2 sin2(σZN)

e−δZN√
B(σZN/π)

 , (2. 47)

Im U = sin(σZN)

{
B(σZN/π)e

2δZN − g22 sin2(σZN) cos
2(σZN)

e−2δZN

B(σZN/π)

+ 2g1 cos
2(σZN)− g2

}1/2

(2. 48)

with σZN0 is given by Eq.(2. 18) and

g2 = 1.8(a2)0.23e−δZN . (2. 49)
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The factors g1 and g2 are originally unity. The first (second) factor of g1 is responsible
for a2 ≫ 1(a2 ≪ 1) (see (a) of [33]). The parameters σZN and δZN are given as follows:
(1) At E2(R0) > E > E1(R0),

σZN =
∫ R0

T1
K1(R)dR + σZN

0 (2. 50)

and

δZN =
∫ T2

R0

K2(R)dR + δZN0 . (2. 51)

(2) At E ≤ E1(R0),
σZN = σZN

0 (2. 52)

and

δZN = −
∫ T1

R0

|K1(R)|dR +
∫ T2

R0

|K2(R)|dR + δZN0 . (2. 53)

2.2.2. Nonadiabatic tunneling case

First, the overall transmission probability (P12) from left to right or vice versa is the
physically meaningful probability.
(1) At Eb ≥ E ≥ Et

P12 =
W 2

1 +W 2
, (2. 54)

where

W =
h2
a2/3

∫ ∞

0
cos

[
t3

3
− b2

a2/3
t− h3

a2/3
t

h4 + a1/3t

]
dt, (2. 55)

h2 = 1 +
0.38

a2
(1 + b2)1.2−0.4b2 , (2. 56)

h3 =

√
a2 − 3b2√
a2 + 3

√
1.23 + b2 (2. 57)

and
h4 = 0.61

√
2 + b2. (2. 58)

The factors h2, h3 and h4 are originally 1/2, 1, and 1, respectively, and are confirmed
to cover the whole range of a2 (see (c) of [33]).
(2) At E ≤ Et

P12 =
B(σc/π)e

−2δZN

[1 + (0.5
√
a2/[
√
a2 + 1])B(σc/π)e−2δZN ]2 +B(σc/π)e−2δZN

(2. 59)

with
σc = σZN(1− 0.32× 10−2/a2e−δZN), (2. 60)

δZN =
∫ T r

1

T l
1

|K1(R)|dR, (2. 61)
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and

σZN =
π

8a|b|
1

2

√
6 + 10

√
1− 1/b4

1 +
√
1− 1/b4

, (2. 62)

where the function B(x) is given by Eq.(2. 43). It should be noted that when
a2 → 0, namely, the upper adiabatic potential goes away, we have

P12 =
e−2δZN

1 + e−2δZN
, (2. 63)

which agrees with the ordinary single potential barrier penetration probability. The
factor 0.32 × 10−2/a2 in Eq.(2. 60) is originally 0 and confirmed to be better (see
(c) of [33]). The simplified expression of σZN is derived by using the linear potential
model (see (d) of [33]).

When the phases are needed, what we have to use is the reduced scattering
matrix (SR) defined by Eq.(2. 34) with U2 in terms of U1 is given by Eq.(2. 35).
The parameters ∆12,∆11,∆22 and U1 are defined as follows:
(1) At Eb ≥ E ≥ Et

∆12 = σZN, ∆11 = σZN − 2σZN
0 and ∆22 = σZN + 2σZN

0 , (2. 64)

σZN
0 = −1

3
(Rt −Rb)K1(Rt)(1 + b2), (2. 65)

U1 = i[
√
1 +W 2eiϕ − 1]/W, (2. 66)

ϕ = σZN + arg Γ

(
1

2
+ i

δZN
π

)
− δZN

π
ln

(
δZN
π

)
+
δZN
π
− h5, (2. 67)

h5 = 0.34
a0.7(a0.7 + 0.35)

a2.1 + 0.73
(0.42 + b2)

(
2 +

100b2

100 + a2

) 1
4

, (2. 68)

σZN = − 1√
a2

[
0.057(1 + b2)

1
4 +

1

3

]
(1− b2)

√
5 + 3b2, (2. 69)

δZN =
1√
a2

[
0.057(1− b2)

1
4 +

1

3

]
(1 + b2)

√
5− 3b2, (2. 70)

The empirical corrections used for h5, σZN and δZN are introduced by using the linear
potential model (see (c) of [33]).
(2) At E ≤ Et

∆12 = ∆11 = ∆22 = −2σZN, (2. 71)

ReU1 = sin(2σc)

 0.5
√
a2

1 +
√
a2

√
B
(
σc
π

)
e−δZN +

eδZN√
B(σc/π)

 , (2. 72)

ImU1 = cos(2σc)

√√√√ (ReU1)2

sin2(2σc)
+

1

cos2(2σc)
− 1

2 sin(σc)

∣∣∣∣∣ ReU1

cos(σc)

∣∣∣∣∣ , (2. 73)
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The parameters σc and δZN are given by Eqs.(2. 60) and (2. 61), respectively. The
factor 0.5

√
a2/(1 +

√
a2) is originally 0.25 and confirmed to be better (see (c) of

[33]).

2.3. Numerical example

One example is shown here (see (g) of [33]). The following 4-state problem defined
in atomic units is employed.

V1(R) = 0.037 exp[−1.3(R− 3.25)]− 0.034,

V2(R) = 0.037 exp[−1.3(R− 3.25)]− 0.012,

V3(R) = 0.4057[1− exp[−0.344(R− 3)]]2 − 0.03,

V4(R) = 0.4057[1− exp[−0.344(R− 3)]]2. (2. 74)

The couplings are given by

V13(R) = V14(R) = V23(R) = V24(R) =
2V0

1 + exp(R− 3)
, V12(R) = V34(R) = 0.

(2. 75)
This model system represents some states of O2 (reduced mass = 29377.3 me) [46].
Fig.3 shows the potential curves in the case of V0 = 0.002 Eh. Fig.4 indicates the
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Figure 3: Four-state model potentials of Eq.(2. 74) with V0 = 0.002 Eh. Reproduced
from Ref.(g) in [33] by permission of American Institue of Physics (AIP).

transition probability from state 1 to 2 in the case of V0 = 0.004 Eh in the energy
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Figure 4: Transition probability vs. energy for the potential system of Fig.3 with
V0 = 0.004 Eh. E

(3)
top = 0.01009 Eh, E

(4)
bottom = 0.0158 Eh and the starting energy

Estart = 0.00568 Eh. Reproduced from Ref.(g) in [33] by permission of AIP.

range covering the classically forbidden region of the avoided crossing between the
highest and second highest adiabatic potentials. The parameters a2j(j = 1 − 4)
corresponding to V0 = 0.004 Eh are given as follows, where j represents the crossing
position (see Fig.3):

(a21, a
2
2, a

2
3, a

2
4) = (0.98, 0.55, 0.43, 0.24). (2. 76)

It should be noted that the energy of the top (bottom) of the third (fourth) adiabatic
potential is equal to

E
(3)
top = 0.01009 Eh, E

(4)
bottom = 0.0158 Eh (2. 77)

and the starting energy of Fig.4 is 0.00568 Eh. It is clearly seen that the present
semiclassical theory works very well, reproducing the detailed resonances. There are
many more examples to demonstrate the accuracy of the theory[33].

3. How to treat dynamics

3.1. Zhu-Nakamura trajectory surface hopping
(ZN-TSH) method

The ZN-TSH is the simplest method to estimate reaction probabilities by running
classical trajectories on adiabatic potential energy surfaces. The probability is given
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by the ratio of the number of relevant reactive trajectories to the total number of
trajectories. As is well known, if the total number of trajectories is large enough,
the ratio gives the proper estimate of the transition probability. The phases along
trajectories are not taken into account in this method.

Nonadiabatic transitions in the vicinity of conical intersections are treated as
follows: the adiabatic potential energy difference (∆E) between the relevant surface
and the nearest potential energy surface is computed along each classical trajectory
and the minimum ∆E position is detected. That provides the position of transition.
There the nonadiabatic coupling vector is evaluated and the direction of the vector
provides the direction of transition. Two potential energy curves along this direction
are used to evaluate the corresponding nonadiabatic transition probability by using
the relevant Zhu-Nakamura formula. As was explained in the previous section, the
necessary parameters can be estimated from the adiabatic potential curves. When
the translational energy along the transition direction is larger than the energy at
the avoided crossing point, the transition is the ordinary classically allowed one. The
relevant transition probability is pZN. If the former energy turns out to be lower
than the latter, the transition is classically forbidden and the corresponding Zhu-
Nakamura probability P12 should be used. The judgment whether the transition
is carried out or not is made by generating a random number prandom. There are
two versions: one is ant-eater procedure and the other is ants procedure [47]. In the
former case the transition is carried out when the Zhu-Nakamura probability is larger
than prandom and in the latter case the trajectory is branched into two in which each
trajectory is associated with the branching ratio given by the corresponding Zhu-
Nakamura probability. Since the number of branched trajectories can be large in the
ants procedure, the ant-eater procedure is simpler and is usually employed. When
the transition is made, the kinetic energy along the transition direction changes
because of the electronic energy difference ∆E and the appropriate modification
of kinetic energy of the trajectory should be made. As can be understood in the
above explanation, the nonadiabatic transition is considered only at the minimum
energy separation and the nonadiabatic coupling vector is needed only to decide
the transition direction there. Besides the transition probabilities can be estimated
from the analytical formulas. Thus the method is much simpler than solving the
time-dependent coupled differential equations with use of the nonadiabatic couplings
all the way. It should be noted that the classically forbidden transitions cannot be
properly treated by solving the time-dependent coupled equations based on classical
trajectories.

If it is too much cpu-time consuming to compute nonadiabatic couplings, the
following approximation can be employed[48]. In the vicinity of conical intersection
we can assume the following diabatic Hamiltonian,

H =
(
V1 V
V V2

)
=
(∑

j Ajxj
∑
j Bjxj∑

j Bjxj −
∑
j Ajxj

)
. (3. 1)
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Then the nonadiabatic coupling vector e⃗ = {ej} is equal to

ej =

∂V
∂xj

(V1 − V2)− V (∂V1
∂xj
− ∂V2

∂xj
)

(∆E)2

=

∑
k(AkBj − AjBk)xk

(∆E)2
, (3. 2)

where

∆E =
√
(
∑
k

Akxk)2 + (
∑
k

Bkxk)2. (3. 3)

On the other hand, the second derivative of ∆E is given by

∂2∆E

∂xi∂xj
=
−1

(∆E)3

[
(
∑
k

Akxk)
2BiBj+(

∑
k

Bkxk)
2AiAj−(

∑
k

Akxk)(
∑
k

Bkxk)(AiBj+BiAj)
]
.

(3. 4)
Thus, up to an irrelevant scale factor we have

∂2∆E

∂xi∂xj
∝ eiej. (3. 5)

This gives a rank-1 matrix and the eigenvector of its only one non-zero eigenvalue
provides the direction of the nonadiabatic coupling vector. This approximation
works well, as will be demonstrated in Section 4.1.

3.2. Herman-Kluk type semiclassical initial value
representation method with use of the Zhu-Nakamura
formulas (ZN-HKSCIVR)

When coherence plays crucial roles in chemical dynamics, the transition amplitude
should be evaluated with various phases taken into account. The best way to do
this is to employ the initial value representation (IVR) devised by Miller[42]. This
was combined with the idea of frozen Gaussian propagation approximation[43, 44].
Here we use this method.

The initial wave function ψ(r0, t = 0) is expanded in terms of frozen Gaussian
wave packets and the latter are propagated along classical trajectories. The total
wave function at time t, ψ(r, t), is expressed as

ψ(r, t) =
∫
traj

dq0dp0

(2π)N
g(r;qt,pt)Cq0,p0,t exp[iSq0,p0,t]

∫
dr0g

∗(r0;q0,p0)ψ(r0, t = 0),

(3. 6)
where N is the dimensionality of configuration space, Sq0,p0,t is the action integral
along the classical trajectory propagated from (q0,p0, t = 0) to (qt,pt, t), and
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Cq0,p0,t is the Herman-Kluk pre-exponential factor along the trajectory. The frozen
Gaussian wave packets g(r;q,p) are defined by

g(r;q,p) = (
2γ

πh̄
)N/4 exp[−γ(r− q)2/h̄+ ip · (r− q)/h̄], (3. 7)

where γ is a constant parameter common to all the wave packets. The pre-exponential
factor Cq,p,t is defined by

Cq,p,t =
[
Det(

∂pt
∂p0

+
∂qt
∂q0

− 2iγ
∂qt
∂p0

+
i

2γ

∂pt
∂q0

)
]1/2

. (3. 8)

As is easily understood, the above formulation is for the dynamics on adiabatic
potential energy surface. In order to treat nonadiabatic dynamics the correspond-
ing transition amplitude from Zhu-Nakamura theory is incorporated into the above
formulation. In the case of classically allowed transition from the state j to i, the
amplitude Iij from the transition matrix IX should be incorporated (see Eqs.(2. 14)
and (2. 33)). In the case of classically forbidden transition, the reduced scattering
matrix element SR

ij should be used (see Eqs.(2. 34) and (2. 45)). Once the total
wave function ψ(t) is known, the transition amplitude for any transition can be sim-
ply calculated by taking the projection of the above total wave function ψ(r, t) onto
the final state ψf (r). It should be noted that if a classical trajectory goes around a
conical intersection, the geometrical phase, or Berry phase[49] should be added.

In the case of photo-absorption the total absorption cross section is given by

σ(ω) =
2παa20ω

h̄

∫ ∞

−∞
dt exp[iEt/h̄] < ψ(0)|ψ(t) >, (3. 9)

where α, a0 and ω are fine structure constant, Bohr radius, and light frequency,
respectively. The wave function ψ(0) represents the initial state on the excited
potential energy surface and is given by

|ψ(0) >= µ|ϕi >, (3. 10)

where ϕi and µ represent the initial state on the ground potential energy surface
and the transition dipole moment. The total wave function ψ(t) is calculated by
the above mentioned Herman-Kluk type IVR method. When the photo-excited
state is nonadiabatically coupled with some other excited states through conical
intersections, this ψ(t) can be calculated by the ZN-HKSCIVR method. Photo-
absorption of NH3 described in the next Section 4.2 corresponds to this case. Eq.(3.
9) indicates that the total absorption cross section is given by the Fourier transform
of the auto-correlation function < ψ(0)|ψ(t) >[50].

In the above treatment of nonadiabatic transition, it is assumed that the energy
at the transition point is given by that of classical trajectory of the center of each
frozen Gaussian wave packet. More accurate treatment to take into account the fact
that each frozen Gaussian has energy distribution is to use the energy normalized
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eigenfunction expansion method[51]. The frozen Gaussian wave packet just before
the transition is expanded in terms of the energy normalized eigenfunction on the
corresponding potential energy surface. The expansion coefficient is transformed
into the new one by multiplying the Zhu-Nakamura transition amplitude. The wave
function right after the transition is obtained from the new coefficients and the
energy normalized eigenfunctions on the new potential energy surface. In actual
applications the simplified version with use of the energy of the center of each frozen
Gaussian wave packet would be good enough.

3.3. Reaction rate constant of nonadiabatic dynamics

The nonadiabatic transition state theory (NA-TST) has been developed by many
authors by using the perturbative treatment of diabatic coupling or the Landau-
Zener formula (for instance, [52, 53, 54, 55, 56]). Since electron transfer process is
one of the most typical nonadiabatic dynamics, the theory has also been developed
for the process[57, 58, 59] basically by using the perturbation theory. The Zhu-
Nakamura theory can improve the situation by covering the whole range of coupling
strength from diabatic to adiabatic regime[60]. The semiclassical instanton theory
has also been extended to nonadiabatic dynamics[61].

Here, we employ the ordinary formulation of thermal rate constant, which is
given by

k(T ) =
1

Zr

1

2πh̄

∫ ∞

0
dE exp[−βE]N(E), (3. 11)

where T is the temperature with β = 1/κT , Zr is the partition function of reac-
tants and N(E) is the cumulative reaction probability. In the case of nonadiabatic
dynamics, the latter is defined by

N(E) =
1

(2πh̄)F−1

∫
dp⃗dq⃗δ[E −H(p⃗, q⃗)]δ[f(q⃗)](∇⃗f · p⃗)PZN(E⊥(q⃗)), (3. 12)

where F is the number of dimension, f(q⃗) = 0 defines the dividing surface, which
is actually taken to be the crossing seam surface, and E⊥(q⃗) represents the kinetic
energy in the direction perpendicular to the crossing seam surface. The momen-
tum vector is now expressed as p⃗ = (p∥(1), , , , p∥(F−1), p⊥), where p⃗∥ and p⊥ are the
momenta parallel and perpendicular to the crossing seam surface, respectively. By
introducing the energies E∥(j) = p2∥(j)/2 and E⊥ = p2⊥/2, where the mass is assumed

to be unity or the momenta are mass scaled, and using ∇⃗f · p⃗ = p⊥ and the energy
conservation,

E = H = E⊥ + E
[F−2]
∥ + E∥(F−1) + V (q⃗†) (3. 13)

with

E
[K]
∥ ≡

F−1∑
j=K+1

E∥(j), (3. 14)
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the integrals over momenta can be rewritten as

Int(E) ≡
∫
dp⊥p⊥

F−1∏
j=1

∫
dp∥(j)δ(E −H)

= (
1√
2
)F−1

∫ E−V

−V
dE⊥

F−2∏
j=1

∫ E
[j−1]

∥

0
dE∥(j)

1√
E∥(j)

1√
E∥(F−1)

(3. 15)

with E∥(F−1) = E
[F−3]
∥ − E∥(F−2). Using the beta function,

B(p, q) =
∫ 1

0
dttp−1(1− t)q−1, (3. 16)

we obtain

Int(E) =
∫ E−V

−V
dE⊥(E − E⊥ − V )(F−3)/2

F−2∏
m=1

B(
1

2
,
m

2
), (3. 17)

where
F−2∏
m=1

B(
1

2
,
m

2
) =

[Γ(1/2)]F−1

Γ[(F − 1)/2]
. (3. 18)

Then the cumulative reaction probability, i.e., the micro-canonical rate constant, is
finally given by

N(E) = (2πh̄)−F+1 π(F−1)/2

2(F−1)/2Γ[(F − 1)/2]

∫
dq⃗δ[f(q⃗)]

×
∫ E−V

−V
dE⊥(E − E⊥ − V )(F−3)/2PZN(E⊥). (3. 19)

Since the order of integration over E and E⊥ can be changed as,∫ ∞

0
dE

∫ E−V

−V
dE⊥ =

∫ ∞

−V
dE⊥

∫ ∞

E⊥+V
dE, (3. 20)

the thermal rate constant is finally obtained as

k(T ) =
1

Zr

1

2πh̄

1

(8πβh̄2)(F−1)/2

∫
dq⃗†

∫ ∞

0
dEs exp[−βE]PZN(Es), (3. 21)

where Es = E⊥+V†, q⃗† represents the (F −1)−dimensional coordinate space and V†
is the potential along the crossing seam. The rate constant can be simply rewritten
as

k(T ) =
1

Zr

1

2πβh̄

1

(8πβh̄2)(F−1)/2

∫
dq⃗†PZN(β; q⃗†), (3. 22)

where
PZN(β; q⃗†) = β

∫
dEs exp[−β(Es − V†)]PZN(Es; q⃗†). (3. 23)
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The minimum energy crossing point (q⃗
(0)
† ) (MECP) approximation is often employed,

in which the transition is assumed to occur only at (q⃗
(0)
† )[53, 60, 55, 56]. In this case

the rate constant is approximated by

k(T ) =
1

Zr

1

2πβh̄

1

(8πβh̄2)(F−1)/2
PZN(β; q⃗† = q⃗

(0)
† )

∫
dq⃗† exp[−β(V†)], (3. 24)

As is well known, electron transfer is one of the most famous nonadiabatic chem-
ical processes and the Marcus theory is most celebrated[57, 58]. The Marcus theory
is based on the first order perturbation of electronic coupling. By using the ZN the-
ory, we can improve this theory (see (b) and (e) of [60]). Since the electron transfer
is formulated in the free energy space, we introduce the free energy profile by (see
Eq.(3. 12))

exp[−βFr(ξ)] =
∫
dq⃗ exp[−βVr(q⃗)]δ[ξ − f(q⃗)]|∇⃗f(q⃗)|, (3. 25)

where the index r represents ”reactant”, ξ is the free energy and ξ = ξ0 = f(q⃗)
defines the crossing seam surface. As in the case of Marcus theory, we assume the
parabolic approximation,

Fr(ξ) =
1

2
ω2(ξ − ξ01)2, Fp(ξ) =

1

2
(ξ − ξ02)2 +∆G, (3. 26)

where Fp is the product potential, ξ01 (ξ02) is the position of the donor (acceptor)
free energy minimum, and ∆G represents the exothermicity. The crossing point ξ0
is given by

ξ0 =
1

2
(ξ01 + ξ02) +

∆G

ω2δξ0
(3. 27)

with δξ0 = ξ01 − ξ02. The Marcus formula is given by

kMarcus(T ) =
H2
DA

h̄

√
πβ

λ
exp[−β (λ+∆G)2

4λ
], (3. 28)

where

λ =
1

2
ω2(δξ0)

2. (3. 29)

Then the improved formula is given by

k(T ) = κkMarcus(T ), (3. 30)

where

κ =
h̄

2πH2
DA

√
λ

πβ
P̄ (β; ξ0). (3. 31)

The energy averaged transition probability P̄ (β; ξ0) is given by

P̄ (β; ξ0) = β
∫ ∞

0
dE exp[−βE]PZN(E; ξ0). (3. 32)

Both of Marcus’s normal (NT type) and inverted (LZ type) cases can be treated
with use of the corresponding ZN probability formulas.
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3.4. How to treat the effects of environment

The environmental effects are quite crucial to comprehend chemical dynamics in wet
chemistry. The so called dielectric medium model or the polarized continuum model
(PCM)[62, 63, 64] has been widely employed to take into account the solvation ef-
fects. The solvent in this model is treated as a continuum medium with a constant
permittivity and the solute molecule is put in a certain empirical cavity. The dy-
namical solvation effect cannot be treated by the PCM model, unfortunately. In this
model, the liquid structure is discussed in terms of the radial distribution function
(RDF). Chandler and coworkers have developed the reference interaction site model
(RISM) theory[65, 66] based on the Ornstein-Zernike equation. Hirata and cowork-
ers combined this RISM theory with quantum chemistry. This is called RISM-self
consistent field (RISM-SCF) approach[67, 68, 69]. Since the solution structure and
electronic states are iteratively optimized in RISM-SCF, the solvation effects are
reasonablly well taken into account by using the quantum chemical calculations.
The RDF obtained from the RISM-SCF method is, however, one-dimensional aver-
aged distribution in spite of the fact that the dynamical solvation effect occurs in
three-dimensional space. One can employ the three-dimensional RISM-SCF method,
which has been extended to the simulation of dynamics[70]. But this is very much
time-consuming, unfortunately.

On the other hand, the molecular mechanical (MM) simulation is quite popular
in molecular dynamics of condensed matter. Analytical potential functions with
empirical parameters are used in the MM method. One of the most famous force
fields is AMBER[71, 72, 73]. The computational cost of the MM method is propor-
tional to the square of number of atoms, and it could be reduced by the neighbor-list
method[74]. This is quite a reasonable approach for obtaining the statistical infor-
mation. The target of the conventional MM approach is therefore focused on the
electronic ground state of the system. The conventional formulas and parameters in
this MM approach are designed to reproduce equilibrium molecular conformation in
the electronic ground state. Furthermore, the periodic boundary condition (PBC)
is used to take into account the solution or crystal environment, and the solvent
is represented as a finite system surrounded by its replicas. The minimum-image
(MI) convention and the cutoff-radius are also introduced to calculate the total
energy and force in spite of the fact that the Coulombic interaction goes to zero
very slowly. In order to treat the long-range electrostatic interaction, the Ewald
summation method has been implemented. The MD simulation together with the
Ewald summation method can achieve explicit treatment of the long range Coulom-
bic interaction compared to the implicit way of treatment by the RISM theory (see
Fig.5)[75, 76, 77].

3.4.1. QM/MM method

Morokuma et al. have proposed a sophisticated approach for treating large chemical
systems by using quantum chemical and molecular mechanical (QM/MM) hybrid-
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(a) (b)

(image)I \R

(real)R \M

I \R

R\M

Minimum image convention Ewald summation method

Figure 5: The difference between (a) MI convention and (b) Ewald summation
method. The green and red circles represent particles in the region M and in its
outside, respectively. The lines connecting circles indicate interactions taken into
account.

model known as ONIOM (our Own N-layer Integrated molecular Orbitals and molec-
ular Mechanics) theory[78, 79]. The potential energy of the chemical reaction part
(QM layer) is computed by ab initio quantum chemical calculation, and the remain-
ing nonreactive surrounding part (MM layer) is given by an empirical molecular
mechanics (MM) potential. The ONIOM potential energy is defined by the extrap-
olation form,

EONIOM = EMM
real + EQM

model − EMM
model, (3. 33)

where “real” and “model”, respectively, refer to the full system and the QM layer.
EMM

real is the MM potential energy of the full system, EQM
model is the QM energy of the

model layer, and EMM
model is the MM energy of the same model layer. In this approach

there are two methods to compute EMM
model and E

QM
model; one is based on the mechanical

embedding (ME) method, while the other is based on the electrostatic embedding
(EE) method[79].

The use of molecular dynamics (MD) simulation to comprehend chemical dynam-
ics is quite popular nowadays. In the on-the-fly MD (direct dynamics) simulation,
the potential energy and its force are provided by ab initio quantum chemical cal-
culations at each time-step. The ONIOM-MD simulation can be performed in the
similar way[80, 81]. If the boundary between reaction center and its surrounding
environment is clearly known a priori, the ONIOM-MD simulation method can be
applied in a straightforward way. If this is not the case and the boundary is not pre-
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dictable, the exchange-algorithm of solvent molecules (ONIOM-XS) and the adap-
tive multiscale QM/MM-MD method can be used[82, 83, 84]. Namely, the ONIOM
method enables us to deal with large complex chemical and biological systems.

It is known now that various quantum mechanical effects play key roles even in
complex systems [85]-[94] and that the polarized continuum model (PCM) cannot
necessarily reproduce the effects. York and coworkers have extended the particle-
mesh Ewald summation method (PME) so as to be combined with QM/MM[95].
The ONIOM scheme[78, 79] is superior to the simple QM/MM scheme with respect
to the calculation of the interaction between QM and MM layers; thus the PME
method should be incorporated into the ONIOM scheme[96, 97].

3.4.2. Particle-mesh Ewald summation method

A.Formulas of force field
The AMBER force field is composed of five terms, which are energies of (i) bond,
(ii) angle, (iii) dihedral angle, (iv) van der Waals interaction, and (v) Coulombic
interaction:

V =
∑
bonds

kr(r − req)2 +
∑

angles

kθ(θ − θeq)2 +
∑

dihedrals

Vn
2

[1 + cos(nφ− γ)]

+
∑
i<j

[
Aij
R12
ij

− Bij

R6
ij

]
+
∑
i<j

[
qiqj
εRij

]
, (3. 34)

where r, θ, ϕ and Rij are the bond length, bond angle, dihedral angle and the
distance between atom i and j, respectively. The parameters req and θeq refer to
bond distance and bond angle at equilibrium molecular geometry, kr and kθ are the
respective force constants. The angle γ is the offset of rotation, qi and qj are atomic
charges of atoms i and j, and ϵ is 4π times of permittivity of vacuum.

If we use the periodic boundary condition, the Coulombic interaction is rewritten
as

U =
1

2

∑
i

∑
j ̸=i

qiqj
|Ri −Rj|

+
1

2

∑
N ̸=0

∑
i

∑
j ̸=i

qiqj
|Ri −Rj −N|

, (3. 35)

where Ri and Rj are the coordinates of atoms i and j, respectively, and N is the
origin of replica, namely, N = ξa + ηb + ζc, where ξ, η, ζ are integers and a, b, c
are the lattice vectors.

B.Definition of model, real and image layers
The three-layer model is defined in the ONIOM approach as shown in Fig.6. The
layers M (model) and R (real) represent the reaction center and the environment,
respectively. The unit cell in the present treatment is R. The surrounding image
layer denoted by I is provided by the periodic replicas of the real layer (R). We have
therefore the relationship M ⊂ R ⊂ I . The subspace R\M (= R −M ) represents
the outer space of M within R and is the region where the electrostatic embedding
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scheme is employed.

Figure 6: Three-layer model based on the ONIOM scheme. The unit cell is composed
ofM (model) and R (real), and the image layer I is composed of the periodic replicas
of R.

C.The original ONIOM scheme
(i) Coulombic interaction
In the original ONIOM scheme, the PBC is not employed and the total Coulombic
energy is given by a finite sum

U =
1

2

∑
A

qA
∑

B(A ̸=B)

qB
rAB

, (3. 36)

where qA and qB are effective charges of particles A and B (∈ R), and rAB = |rB−rA|.
If both A and B belong to M , the interaction is taken into account by quantum
chemical calculations (QM). In the case that A ∈ M and B ∈ R\M , on the other
hand, the pairwise interaction is directly estimated as given above, which is called
the mechanical embedding (ME) method. In the more sophisticated procedure called
electrostatic embedding (EE) method, the following modified one-electron operator
for the i-th electron is used in the electronic Hamiltonian of the subspace M :

hQM
i −

∑
B∈R\M

qB
riB

, (3. 37)

where hQM
i is the original one-electron operator. This EE method is employed in

the following sections unless otherwise noted.
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(ii) van der Waals (vdW) interaction
The vdW interaction is expressed as

UV DW =
∑
A

∑
B(A ̸=B)

[
(
AAB
rAB

)12 − (
BAB

rAB
)6
]
. (3. 38)

As mentioned above, the cut off procedure is employed and the summation in Eq.(3.
38) is finite in the ONIOM scheme. The parameters AAB and BAB are given by
AMBER force field[71].

The ONIOM energy is finally given by Eq.(3. 33) which is pictorially shown in
Fig.7(a). The ONIOM energy gradient that is needed for classical trajectory cal-
culation is straightforwardly obtained from Eq.(3. 33) by term-wise differentiation
as

∂EONIOM

∂R
=
∂EMM

real

∂R
+
∂EQM

model

∂R
− ∂EMM

model

∂R
. (3. 39)

D. Particle-mesh Ewald summation approach with use of the ONIOM
scheme
(i) Coulombic interaction
The Coulombic interaction defined in the scheme of periodic boundary condition
(PBC) given by Eq.(3. 35) is rewritten as

UEwald =
1

2

∑
N

∑
A

qA
∑

B(̸=A)

qB
rABN

, (3. 40)

where the lattice vector of the cell is N, and rABN = |rB − rA −N| is the distance
between particle A ∈ R and the particle B ∈ I\R. This can be divided into
the following two terms according to the particle-mesh Ewald summation (PME)
approach[76, 77],

UEwald = Uint + Uext. (3. 41)

The first term Uint represents the interactions in the unit cell,

Uint =
1

2

∑
A

qA
∑

B(̸=A)

qB
rAB

, (3. 42)

where A andB ∈ R. This term is the same as the corresponding energy in the
ONIOM approach and is estimated by the quantum chemical calculation within the
EE scheme.

On the other hand, Uext represents the interaction between the unit cell (R) and
the replicas(I\R),

Uext =
1

2

∑
N(̸=0)

∑
A

qA
∑
B

qB
rABN

, (3. 43)
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where A ∈ R and B ∈ I\R.
When A ∈ R and B ∈ R, the computational procedure of Coulombic interac-

tion is same as that in the ONIOM scheme. The Coulombic potential energies for
B ∈ I\R can only be taken into account in the PME-ONIOM scheme. In the case
of A ∈ R\M , the Coulombic potential energies are calculated by PME wherever the
particle B is located. The Coulombic potential energy for A ∈ I\R is not calculated
wherever B is located.

(ii) vdW interaction
The vdW interaction energy in PBC is given by

UV DW =
∑
N

∑
A

∑
B(̸=A)

[
(
AAB
rABN

)12 − (
BAB

rABN

)6
]
. (3. 44)

Since UV DW decays rapidly with the distance, the summation over N is taken only
over the nearest neighbor replicas, namely |N| = ±1. This is the so called minimum
image (MI) convention. The parameters AAB and BAB are obtained also from the
general AMBER force field[71, 72, 73]. When A ∈ R and B ∈ R, the computational
method is same as that in the original ONIOM scheme. The vdW potential energy
for B ∈ I\R is calculated by the MM method. But this interaction could usually
be cut off, since the subspace I\R is quite far from M.

In the case of A ∈ R\M and B ∈ R, the interaction is calculated by the MM
method. The interaction for B ∈ I\R is also calculated by MM, but the summation
is taken over the minimum image (MI) (|N| = ±1).

The PME-ONIOM procedure is summarized as follows[96]:

• E MM
real by the PME approach.

• E MM
model by the direct summation of the interaction energy.

• E QM
model by the quantum chemical calculation with use of the electrostatic em-

bedding scheme.

Since the periodic boundary condition (PBC) provides the additional interaction
energy ∆E between the model (M) and its outside, the PME-ONIOM energy is
finally given by

EPME−ONIOM = EMM
real + EQM

model − EMM
model +∆E (3. 45)

which is pictorially shown in Fig.7. The orange-colored part circumscribing the green
QM part is of electrostatic embedding (EE) scheme given by Eq.(3. 37); the quantum
chemical calculation is performed by directly taking into account the Coulombic
interaction between the electron in the subspace M and the charge qB in R\M and
I \R, where the polar solvent molecules are described by charge distribution. On
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Figure 7: The pictorial scheme of (a) original ONIOM scheme with electrostatic
embedding (EE) and (b) PME-ONIOM approach with EE. These figures are based
on the practical scheme rather than the above mentioned theoretical concept.

the other hand, the QM calculation without the EE scheme is carried out by the
mechanical embedding (ME) scheme. Thus, the PME method makes it possible for
the Coulombic interaction to directly affect the QM part.

The difference between the original ONIOM scheme and the PME-ONIOM scheme
is the existence of the term of ∆E. The polarity of solution can be properly taken
into account by the present EE scheme. In the present PME-ONIOM scheme, the
subspace I\R may be divided into two layers: one is described by the electrostatic
embedding method (R\M) and the other is described by the mechanical embedding
method (I\R). In this sense the present PME-ONIOM scheme can be combined
with the three-layered ONIOM. In the same way as in Section 3.4.2 C, the energy
gradient is straightforwardly calculated from

∂EPME−ONIOM

∂R
=
∂EMM

real

∂R
+
∂EQM

model

∂R
− ∂EMM

model

∂R
+
∂∆E

∂R
. (3. 46)
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4. Clarification of dynamics

4.1. Reactions in tri-atomic systems

Applications of the ZN-TSH method to the reactions in tri-atomic systems are re-
ported here by taking DH+

2 and CH2 systems as examples. The DH+
2 is the well

known most basic system that has a conical intersection at infinity with the crossing
seam almost parallel to the reaction coordinate. In this kind of simple systems we
can use analytical expressions of potential energy surfaces. The potential energy sur-
faces used for DH+

2 are the diabatic representation developed by Ushakov et al.[98].
In the actual TSH calculations the adiabatic potentials are used by diagonalizing
the diabatic ones and the crossing seam surface is expressed by analytical functions.
Fig.8 shows numerical results of the cumulative reaction probability for the specified
initial rovibrational state for H2(v = 1, j = 2) + D+ → HD+ + H[99]. QM is the
result of quantum mechanical numerical solutions of coupled Schrödinger equations.
The new (old) TSH means the TSH calculations with use of the ZN (LZ) formulas.
Since resonances are not the target of interest here, we can say that the ZN-TSH
works well to reproduce the overall reaction probability. It should be noted that
the nonadiabatic transitions are classically forbidden when the vibrational quantum
number v is less than or equal to 3. This means that the ZN-TSH works well even for
classically forbidden transitions. It should also be noted that the LZ-TSH does not
work even at high energies. This is because the transitions may become classically
forbidden due to energy transfer in the multi-dimensional space. The cross section
calculations for H++D2 and D++H2 are carried out with use of the Zhu-Nakamura
theory by Li and Han[100].

The second example is the reaction C + H2(v = 1, j = 0) → CH + H. This has
a conical intersection in the reaction zone and both LZ and NT types of transitions
occur. The model potential energy surfaces are constructed by using the DIM (di-
atomics in molecule) method[48]. Here the generalized TSH method explained in
Section 3.1 is employed without using analytical expression of crossing seam surface.
The approximate way of estimating nonadiabatic coupling vector with use of Hessian
is demonstrated to work well. One of the numerical results is shown in Fig.9. This
shows the cumulative reaction probability for the above mentioned process. There
are many resonances because of the deep potential well in the ground state poten-
tial energy surface. Again resonances are not the target of interest. The ZN-TSH
method works acceptably well. The open symbol represents the result with use of
the approximate nonadiabatic coupling vector.

4.2. Absorption spectrum of NH3

The photoabsorption dynamics of ammonia (NH3) is investigated by the ZN-HKSCIVR
approach with the full dimensional degrees of freedom taken into account[101]. It is
well-known that the progressions in the umbrella mode (ν2) in the S1 ← S0 absorp-
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Figure 8: Cumulative reaction probability for the specified initial rovibrational state
(v = 1, j = 2). The new (old) TSH means the present results with use of the Zhu-
Nakamura (Landau-Zener) formulas. Reproduced from Ref.[99] by permission of
American Institue of Physics (AIP).

tion band are observed in the Franck-Condon region [102, 103, 104]. The scenario
of photodissociation of ammonia molecule is as follows:

(1) The excited molecule is trapped by the shallow well just after excitation to S1.

(2) The ν2-progression features the broad peaks partly due to tunneling effect by
the predissociation in the shallow well.

(3) The excited molecule passes through the conical intersection between S1 and
S0 along the dissociation pathway to NH2 + H.

Since this is a problem of spectrum, ZN-HKSCIVR is a suitable approach. The

Table 1: The vertical excitation energy for S1 − S0 of NH3 with use of two different
methods

Thoery Vertical excitation energy
MRCI/aug-cc-pVDZ 6.66

SA-CASSCF/aug-cc-pVDZ 5.93

state-averaged 8-electron and 7-orbital complete active space self-consistent field
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C+H2(v=1, j=0, sur=1) H + CH(sur=2)

Quantum

TSH: Nonadiabatic Coupling Vector

TSH: Difference of Hessian

Figure 9: Cumulative reaction probability for the specified initial rovibrational state
(v = 1, j = 0). The solid (open) square is the result with use of the proper nona-
diabatic coupling vector (approximate vector obtained from Hessian. Reproduced
from Ref.[48] by permission of AIP.

(CAS(8e,7o)-SCF) scheme was used in the ab initio part of the on-the-fly dynamics.
The Hessian matrices are required to propagate the frozen Gaussian wavepackets,
as explained in Section 3.2. To estimate the error due to SA-CASSCF in the S1-S0

excitation energy, the MRCI calculation was performed at the same level of basis
set. The result is listed in Table 1. Since the estimated error is 0.73 eV, the result
for ν2-progression is shifted by this amount.

Figure 10 shows the full-dimensional spectrum comprised by forty trajectories.
It should be noted that the nonadiabatic transition along the dissociation path
provides the background broad peak that is missing in the one-surface treatment
done by Guo et al. [104]. Table 2 shows the peak energies of the ZN-HKSCIVR
and experimental spectra. The experimental measurement was performed at 16 K
[102]. The peak energies of the present theoretical results reasonably well agree with
the experimental data. The intervals of the peaks of ND3 are clearly smaller than
those of NH3. This indicates that the quantization of vibrational motions are well
represented by the semiclassical method. The energy difference between the theory
and experiment is approximately 300cm−1. Another significant isotope effect is the
narrowing of peak widths observed experimentally[102, 103]. In this sense it would
be interesting to improve the present treatment by taking into account the quantum
mechanical tunneling effect. This can be done by applying the newly developed
method[45].
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Figure 10: Photoabsorption spectra of (a) NH3 and (b) ND3

4.3. Reaction rate of electron transfer

The nonadiabatic transition state theory (NA-TST) explained in Section 3.3 has
been applied to electron transfer processes. The first example is to demonstrate
that the NA-TST based on the Zhu-Nakamura theory works well over the whole
range of electronic coupling strength (see (c) of [60]). Fig.11 displays the calculated
results of five different approaches as a function of electronic coupling (HAB) in the
unit of ω at low temperature T = 0.3ω, where ω = 500 cm−1 is the frequency of
harmonic oscillators. The potential system used is a simple one-dimensional model
of two shifted harmonic oscillators, the parameters of which are taken from Ref.[105].
The potential energy at crossing V0, the effective mass m, and the exothermicity ∆G
are V0 =1500 cm−1, m = 1836 me. and ∆G = 0, respectively. It should be noted
that the simplicity of the model does not destroy the generality. As is seen, the
present NA-TST theory based on the ZN theory (solid line) agrees very well with
the exact quantum mechanical results (dots) in the whole range of the coupling
strength. The Bixon-Jortner theory[58] (dot line) works well in the weak coupling
regime (HAB < 0.2ω), but fails at larger couplings. The worse results by the Marcus
theory (dash line) and by the Marcus formula with use of the LZ (dash-dot line)
probability indicate the importance of nonadiabatic tunneling. Namely, not only
the nuclear tunneling but also the coupling between electronic and nuclear motions
play crucial roles.

The second example is the reproduction of the experiment done by Nelsen et.
al[106]. They measured the electron transfer rate of 2,7-dinitronaphthalene in three
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Table 2: The peak positions (ν2-progression) of theoretical and experimental data
for NH3 and ND3.

NH3 ND3

Band Exp./cm−1 Theo.∗/cm−1 Band Exp./cm−1 Theo.∗/cm−1

00 46222 46495 00 46701 46823
21 47057 47374 21 47369 47538
22 47964 48273 22 48052 48233
23 48869 49172 23 48697 48928
24 49783 50112 24 49357 49602
25 50730 51012 25 50062 50277
26 51656 51952 26 50748 50971
27 52543 52892 27 51451 51666
28 53469 53872 28 52168 52381
29 54454 54853 29 52874 53097
210 55380 55834 210 53582 53832
211 56342 56836 211 54306 54568
212 57300 57857 212 55054 55304
213 58285 58879 213 55751 56019

*The peaks shifted by 0.73 eV.

kinds of solvents by using ESR. They used the Marcus-Hush theory[57] and the
Bixon-Jortner theory[58], but could not reproduce the experimental results, since
the electronic coupling strength is in the intermediate range. Fig.12 shows the
numerical results. Calculations are made based on the one-dimensional model with
use of the parameters taken from Ref.[106] except for the effective frequency ω,
which is 1200 cm−1, 950 cm−1, 800 cm−1 for the three solvents, CH3CN, DMF
(dimethylformamide) and PrCN (butyronitrile), respectively. As can be seen, the
experiment is nicely reproduced.

Applications of the present theory to charge transfer in organic semiconductors
and organic molecules for solar cells are made by Nan et al.[107] and by Zhao and
Liang[108] with use of quantum chemical electronic structure calculations. The
numerical methods of Monte Carlo and umbrella sampling are employed to attack
complex systems by Zhao et al. (see (d) of [60]). The determination of electronic
structure parameters such as the reorganization energy λ and the coupling strength
by quantum chemical calculations is not easy, unfortunately. Use of spectroscopic
data is sometimes useful as is discussed by Nelsen et al.[109].
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Figure 11: Electron transfer rate as a function of electronic coupling strength HAB

in the units of ω at low temperature T = 0.3ω and ω = 500 cm−1. Dot:quantum me-
chanical exact result, solid line:present NA-TST based on ZN theory, dot line:Bixon-
Jortner theory, Dash line: Marcus theory, dash-dot:LZ formula.

4.4. Photodissociation of H2SO4

The isotopic imprint of sulfur bearing compounds is an important tool to under-
stand the sulfur cycle of planetary atmosphere. Sulfur isotope analysis has been
employed for many years to study the rise of oxygen on the Earth during the Archean
period[110, 111, 112] and to understand the size, strength and emission features of
stratospheric volcanic eruptions[113, 114]. Sulfur isotopes and non-mass dependent
(NMD) fractionation effects have been applied to the study of meteorites[115] and to
the study which links the deep sulfur cycle and the Martian atmosphere[116]. Recent
experimental and theoretical studies[117] have presented the strong evidence of the
involvement of intersystem crossings, i.e., potential surface crossings, as a potential
origin of NMD fractionation for photoexcited (SO∗

2) species and for their significance
for explaining the isotopic imprint of the geological record. Furthermore, a recent
study[118] has reported the importance of potential surface crossings for the NMD
effect during the photodissociation of SO.

Although the cyclic reactions have been proposed in several studies, the property
of each reaction still has some ambiguity even in the reaction channel; for example,
what kind of electronic states (excited/ground state or singlet/triplet state . . . ) of
product are correlated with the parent molecule in photodissociation process, etc.
Concerning the sulfuric acid (H2SO4), the information of electronically excited states
is still an open question, albeit the sulfuric acid is a representative one of the most
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Figure 12: Arrhenius plot of electron transfer rate of 2,7-dinitronaphthalene in three
kinds of solvents. Dots are experimental results of Nelsen et al.[106]. Lines are the re-
sults of present improved Marcus formula, Eq.(3. 30). Red line and symbol:CH3CN,
Green line and symbol:DMF, Purple line and small symbol:PrCN. The effective fre-
quencies used are 1200 cm−1, 950 cm−1, 800 cm−1 for CH3CN, DMF and PrCN,
respectively. Reproduced from Ref.(c) of [60] by permission of World Scientific
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(a) (b)

Figure 13: The time-evolution of the potential energy surfaces of a typical trajectory
after photoexcitations of (a) S1 ← S0 and (b) S2 ← S0. The solid and dash lines
represent the occupied state or unoccupied state, respectively.

oxidized sulfur.
In the present study, nonadiabatic ab initio molecular dynamics (ab initio MD)

simulation was performed to explore the photodissociation dynamics of H2SO4 us-
ing the ZN-TSH method. The state-averaged CAS(8e, 8o)SCF/aug-cc-pVDZ is
employed for the ab initio part. The photodissociation dynamics are carried out
for the two excited states S1 and S2 for 20 fs after photoexcitation by using the
on-the-fly ab initio method. If the bond length becomes twice larger than the bond
length of the optimized geometry, it is assumed that the dissociation is over and
the trajectory calculation is stopped. Fifteen and fourteen classical trajectories are
propagated for S1 and S2 excited states, respectively. It is found that nonadiabatic
transitions at potential surface crossings play crucial roles.

There are two dissociation channels, S0 → S1 → S0 and S0 → S2 → S1 (see
Eqs.(i) and (ii) shown below).

H2SO4(1
1A′) + hν −→

{
HSO4(1

2A′′) + H(2S) · · · · · · · · · · · · (i)
HSO4(2

2A′′) + H(2S) · · · · · · · · · · · · (ii)

The time-profiles of the potential energy surfaces along a typical trajectory are
shown in Fig.13. It is clearly seen that there occurs a nonadiabatic transtion at
around 9.3 (9.7) fs for S1 → S0 (S2 → S1).

These reaction channels seem to be quite simple at first glance which provides the
hydrogen atoms in the dissociation limit, but it is actually found that nonadiabatic
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Figure 14: Bond alternation mechanism in the photolysis of H2SO4 via the first and
second excited states.

transitions are involved in both channels[119]. Furthermore, the motion correlated
with the nonadiabatic transitions is SO2 antisymmetric vibration in sulfuric acid,
namely, the bond alternation between single and double SO bonds occurs as shown
in Fig.14. Note that the geometrical structures at these nonadiabatic transtions are
very different from each other.
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Figure 15: The (12π) model system of retinal used. The numbers attached show
the positions of carbon atoms.

4.5. Nonadiabatic photoisomerization dynamics of proto-
nated Schiff base retinal in vacuo

Retinal is a core molecule responsible for the vision of vertebrate animals including
humans. The cis→trans isomerization causes electric impulse to be transmitted to
the brain and recognized as light[120, 121]. Photoisomerization of protonated Schiff
base retinal in vacuo is investigated with use of the ab initio ZN-TSH method[122].
In the case of polyatomic molecules it is not recommended to use analytical functions
of potential energy surfaces, since it is a formidable task to prepare global ab initio
potential functions in advance. Instead, it is recommended to use the so called on-
the-fly ab initio method[123]. The model system of retinal molecule used here is the
12π system in which two methyl groups are removed from the Schiff base.

First, the isomerization of the 11-cis retinal is considered. This is composed of 45
atoms and presents a 129 dimensional problem (see Fig.15). The schematic energy
diagram is shown in Fig.16. There are two conical intersections: one is in between
all-trans form and 11-cis form and the other is in between 9-cis and 11-cis. The
numbers mean the energies in kcal/mol measured from the all-trans ground state.
The blue and red lines indicate the ground and excited states.

The molecule in the 11-cis form in the ground state is photoexcited and 98
classical trajectories are run. The initial geometry in the ground state is optimized
by using the B3LYP method. The isomerization dynamics is investigated by using
the generalized ZN-TSH method explained in Section 3.1 and potential energies are

37



88.2

61.2

83.7

69.0 78.8
(79.0)

50.6
(50.6)

82.4
68.0
(68.0)

88.2

5.9
0.5 0.0

5.9

11-cis
9-cis All-trans

11-cis

CI
CI

CI
S1 min

S1 TS

Figure 16: Energy diagram for cis-trans photoisomerization of retinal. The blue
and red lines indicate the ground and excited states. Energy is in kcal/mol. At
the conical intersections, numbers without/in parentheses indicate energy when the
C8 − C9 = C10 − C11 torsion is twisted in the clockwise/counterclockwise direction.
CI = conical intersection, TS = transition state, min = minimum.

calculated on-the-fly by using the CASSCF(6,6) with the 6-31G basis set. Both
Molpro 2006.1[124] and Gaussian 03[125] suits of ab initio programs are used.

The dynamics clarified is summarized as follows. The average time of nonadia-
batic transition after photoexcitation is 125, 107 and 118 fs for all-trans, 9-cis and
11-cis state, respectively. The twisting bond is C11 − C12 double bond. The bond
length becomes longer like a single bond right after excitation, the bond twists to
60 - 100◦, transition occurs to the ground state, then the bond goes back to double
bond. After the transition the molecule stays in a certain intermediate state for a
while and then finally stabilizes by going through a dynamical barrier which is not
an ordinary potential barrier but a barrier due to the multidimensionality of the
system. The time evolution of the dihedral angles is shown in Fig.17 for the case of
all-trans formation. The angle ϕ(C11 − C12) [ϕ(C9 − C10)] decreases (increases) in
all cases of all-trans, 9-cis and 11-cis, indicating the crankshaft motion.

The twist angle |ϕ| and its velocity d|ϕ|/dt at the hopping geometries are found
to be ϕ| > 90◦ and d|ϕ|/dt > 0 in the case of trans formation and |ϕ| < 70◦ and
d|ϕ|/dt < 0 in the case of cis formation. The two conical intersections are found to
be equally accessed and the overall branching ratio turns out to be ∼ 1 : 1 : 2 for
all-trans : 9-cis : 11-cis. In reality the retinal molecule is embedded in rhodopsin
protein environment and the 9-cis formation is blocked by the protein environment.
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Figure 17: A typical time-evolution of dihedral angles of the backbone in the case of
all-trans formation. The dashed line indicates the time of transition. Reproduced
from Ref.[122] by permission of American Chemical Society (ACS).

If the 9-cis formation is counted as trans formation, the branching ratio becomes
∼1 : 1 for trans : 11-cis. This agrees well with the experimental quantum yield in
protein environment which is equal to 0.67.

Next, photoisomerization of 9-cis retinal in vacuo is investigated[126]. Ab initio
quantum chemical calculations are carried out in the same way as above by us-
ing Molpro 2006.1 and Gaussian 03. The energy diagram is shown in Fig.16. A
10 kcal/mol potential barrier is found with the C8 − C9 = C10 − C11 angle twisted
∼ 26◦ in the excited S1(

1ππ∗) state. This was confirmed by more sophisticated
quantum chemical computation. 71 classical trajectories are run with the time step
0.5 fs.

The overall photoisomerization process clarified by the present study is as follows.
By the photoexcitation S0 → S1(

1ππ∗) the bond length R9(C9 = C10) stretches to
a single bond (> 1.54 Å) and the torsion angle ϕ9(C9 = C10) twists by ±30◦. The
bond length R9 (the angle ϕ9) oscillates between single and double bond character
(within ±30◦) while being trapped in the S1 potential well. When the potential
barrier is surmounted, the crankshaft motion of ϕ9 and ϕ11 is induced towards the
conical intersection and finally the transition to the ground state occurs. In the
crankshaft motion ϕ9 and ϕ11 rotate clockwise and counterclockwise, respectively.
The bond length R9, being a single bond after surmounting the barrier, becomes a
double bond (∼ 1.34 Å). The angle ϕ9, being greater than 70◦ before transition to
all-trans form, becomes 0◦ or 180◦ finally on the ground state. Not like in the 11-cis
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case, there is no two-step relaxation mechanism on the ground state. Because of
the potential well and barrier in the excited state the cis → trans isomerization is
slow and less efficient compared to the 11-cis case. This is not due to the so called
pretwist[127]. The mechanism is intrinsic property of 9-cis retinal and not triggered
by the protein environment. The branching ratio of all-trans formation is 0.13 and
it becomes 0.22 if the 11-cis is counted as trans formation. This agrees well with the
experimental quantum yield[128]. The X-ray structures are also consistent with the
present results[129, 130]. The time spent from photoexcitation to the transition to
the ground state is about 211, 292 and 284 fs for all-trans, 11-cis and 9-cis formation,
respectively. This is 2 ∼ 3 times longer than in the case of 11-cis. Human evolved
to choose the faster 11-cis retinal in rhodopsin for visual recognition.

In the above treatments the environment protein is totally neglected. In real-
ity, the 11-cis retinal is embedded in rhodopsin and 9-cis retinal is embedded in
isorhodopsin. In order to take into account the effects of environment protein we
can combine the QM/MM and the ZN-TSH methods. This will be discussed in
Section 4.7.

4.6. Photo-chemical dynamics of indolylmaleimide deriva-
tives

Compounds with highly selective fluorescence attract significant interest because
of various applications in chemical, environmental and biological sciences. It is an
important research subject to design probes with controlled fluorescence yield and
selective ON-OFF switching depending on the variations of environmental condi-
tions. Here we investigate photo-chemical dynamics of indolylmaleimide derivatives,
molecular structures of which are shown in Fig.18 [131]. Indole derivatives which
attract much interest in biology are well known as fluorescent compounds. The flu-
orescence process is governed by the intra-molecular charge transfer in which indole
and maleimide play roles of electron donor and acceptor, respectively.

There are following three anionic species which exist in solution (see Fig.18), (i)
monovalent anion with a deprotonated indole NH group (IM−′

), (ii) monovalent
anion with a deprotonated maleimide NH group (IM−′′

) and (iii) divalent anion
with doubly deprotonated indole and maleimide NH groups (IM2−). The photo-
absorption maxima in acetonitrile solution are experimentally known to appear at
270 nm and 396 nm, but it is still unknown which species governs the photoemission
process. In order to clarify this, it is crucial to investigate the deactivation processes
due to nonadiabatic transitions by carrying out on-the-fly nonadiabatic ab initio
molecular dynamics computations.

The ab initio quantum chemical calculations are carried out by using the state-
averaged 6-electron 5-orbital complete active space self-consistent field (CAS(6e,5o)-
SCF) scheme with Dunning’s cc-pVDZ basis set. The package Molpro 2006.1 and
2008.1 are used [132]. The initial molecular coordinates and momenta are generated
by random numbers subject to the Wigner distribution, which reflects the vibrational
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Figure 18: Molecular structure of indolylmaleimides; the numbers attached to the
structures show the positions of carbons and nitrogens.

wave function at the zero-point energy. The time step of the time-evolution of
classical trajectories is 0.25 fs and the trajectories are propagated until 60 fs. The
dynamics calculations are performed by using the ZN-TSH method. Table 3 shows
the oscillator strengths at the minimum energy geometry of the S0 and S1 states.

As is clearly seen, the IM−′′
molecule cannot be the candidate of the photoe-

mission species, because the S1 ← S0 and S2 ← S0 photoabsorption transitions are
almost forbidden. Thus, the dynamics of IM−′

and IM2− are mainly investigated
here. The primary electronic configurations for both S1 and S2 states of IM−′

are
mixed excitations of (54a)1 → (56a)1 and (55a)1 → (56a)1. The configuration of
the S1 state of IM

2− is (55a)1 → (56a)1 and that of the S2 state is (55a)
1 → (57a)1.

The (55a)1 → (56a)1 or (54a)1 → (56a)1 excitation of IM−′
and (55a)1 → (56a)1 of

IM2− correspond to the electron transfer from π−MO localized on the deprotonated
indole moiety to π∗−MO localized on the maleimide moiety.

Figure 19 shows the energy diagram for S0, S1 and S2 states of IM
−′

and IM2−.
Photoemission from the S1 state is almost forbidden at the S1 minimum energy
structure for both IM−” and IM2−, as can be seen from Table 3. On the other hand,
Fig.19 indicates that the nonadiabatic transitions through conical intersections seem
to be possible for both transitions S1 → S0 and S2 → S1. This means that it is
not easy to determine which species, IM−′

or IM2−, is the one to emit photons
without carrying out dynamics calculations. Total numbers of classical trajectories
in the case of vertical excitation to S1 for IM−′

and IM2− are 40 and 20, while the
numbers of trajectories in the case of excitation to S2 are 34 and 18, respectively.
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Table 3: Oscillator strengths at the minimum energy geometry in the S0 and S1

states.

Oscillator strength
S0 min S1 min

(a) IM−′

S0-S1 0.48 0.01
S0-S2 0.51 0.70

(b) IM−′′

S0-S1 0.02 0.01
S0-S2 0.01 <0.01

(c) IM2−

S0-S1 0.50 <0.01
S0-S2 0.40 0.01

(a) (b)

Figure 19: Relative energies for the S0, S1, S2 states and minimum energy conical
intersections (ME-CoIns) between S1 and S0 and between S2 and S1 for (a) IM−′

and (b) IM2− where the potential energies at the most stable structures in S0 are
set to be zero.
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(a) (b)

(c) (d)

Figure 20: Time-evolution of energy difference between S1 and S0 for each trajectory
of (a)IM−′

and (b) IM2− after excitation to S1 and (c)IM−′
and (d) IM2− after

excitation to S2, respectively.

The dynamics computations are stopped, when trajectories relax to the S0 state.
Figure 20 show time-evolutions of the energy differences between S1 and S0 states

for all trajectories after the excitation S1 ← S0 [(a) and (b)] and S2 ← S0 [(c) and
(d)] for IM−′

[(a) and (c)] and IM2− [(b) and (d)]. The energy difference is taken to
be positive (negative) when the trajectory is on the S1 (S0) state. Fig.20(a) shows
that the nonadiabatic transition from S1 to S0 in the case of IM−′

takes place with
60 percent probability. The average period of this nonadiabatic transition after
excitation is about 36.19 fs. Fig.20 (c) also shows that 76.5% of the excited state
trajectories are deactivated to S0 within 60 fs due to the two sequential nonadiabatic
transitions of S2 → S1 and S1 → S0. The average period of the nonadiabatic
transition from S1 to S0 is about 26.16 fs. On the other hand, Figs.20 (b) and (d)
indicate that in the case of IM2− nonadiabatic transitions between S1 and S0 do not
occur at all, although the transition from S2 to S1 occurs through the corresponding
conical intersection as shown in Fig.19 (b). This means that IM2− does not decay
to S0 non-radiatively and stays on the S1 state, irrespective of the excitation process
of S1 ← S0 or S2 ← S0. This is the most important finding of the present work
and suggests that IM2− would be the species to contribute to the photoemission.
The two nonadiabatic coupling vectors in the case of IM−′

for both S2-S1 and S1-S0

transitions have large components on the five-membered ring of the indole moiety. In
contrast in the case of transition S2-S1 of IM

2−, the vector has the main components
around the maleimide moiety. The stretching and shrinking motions of each ring
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are the driving force for the actual nonadiabatic transitions. The bond length R1 of
N(7)-C(8) and R2 of C(11)-N(12) stretch to 1.4 Å immediately after photoexcitation,
which corresponds to the positions of the S2-S1 conical intersections. The S1 → S0

transition in the case of IM−′
occurs due to R1 stretching.

4.7. Photo-isomerization of retinal in opsin environment

Rhodopsin (Rh) is the photosensitive chemical in the outer segment of rod-like cells
in the light-sensing structure of the eye, i.e., retina. The 11-cis retinal chromophore
in Rh changes to all-trans form upon exposure to light and bathorodopsin (bathoRh)
is produced in the Rh photocycle. Isorodopsin (isoRh) is an analogue of Rh that
contains a 9-cis retinal chromophore embedded in the same opsin environment. The
9-cis retinal is also converted to all-trans form, producing bathoRh in the same way
as in the Rh case. In spite of structural similarity and the same product formation,
Rh and isoRh show quite different rates and efficiencies of photoisomerization. Iso-
merization of 11-cis (9-cis) retinal in Rh (isoRh) to all-trans essentially completes
in about 200 fs (600 fs)[133]. The isomerization quantum yield in Rh (isoRh) is
reported to be 0.65 - 0.67 (0.22)[134, 135, 128]. A comparative study of the isomer-
ization of Rh and isoRh is very attractive because of the big differences in reaction
time scale and quantum yield despite a small structure difference.

With use of the Landau-Zener formula Schoenlei et al. suggested that the slower
reaction time and lower quantum yield in isoRh are due to slower motion along
the reaction coordinate in the curve crossing region (see (c) of Ref.[133]). From
the X-ray structure analysis Nakamichi et al. proposed that the significant pretwist
of the twist angle ϕ9 of C8 − C9 − C10 − C11 is responsible for Rh’s highly efficient
isomerization[127]. In order to clarify the isomerization dynamics of Rh and isoRh
we have employed the ZN-QM/MM-TSH method, in which the QM/MM method
is combined with the ZN-TSH method as explained in Section 3.4.1[136]. The QM
part, namely, quantum chemical calculation is performed for the retinal, the same
as that in the treatment in vacuo, and the opsin environment is treated by MM
(molecular mechanics) described by AMBER force field parm96.dat[137] embedded
in Gaussian09[140]. The quantum chemical calculations are carried out with the
level of CASSCF(6,6) with the 6-31G basis set. The number of atoms taken into
account for Rh (isoRh) is 5591 (5692). A total of 162 classical trajectories are
computed for both Rh and isoRh with 0.5 fs time step. It took typically 7 weeks for
one trajectory on Intel Core machine with a clock of 2.66 GHz. The quantum yield
or reaction probability, Φ, computed with one standard deviation for the mean is
calculated by the following formula[138],

Φ =
NR

N

(
1±

√
1

N − 1
(
N

NR

− 1)
)
, (4. 1)

where N is the total number of trajectories and NR is the number of reactive tra-
jectories.
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Figure 21: Energy diagram for the cis − trans isomerization of Rh and isoRh.
Energy is in kcalmol−1. The blue and red lines indicate the ground and excited
states, respectively. MECI = minimum energy conical intersection. The energy for
an MECI is the average of the energies of S1 and S0.

In this study, two rotation centers (−C9 = C10− and −C11 = C12−) are closely
monitored and the isomers are classified according to these torsion angles, giving
rise to the four isomeric species: Rh, isoRh, bathoRh and 9,11-di-cis isomers. Fig.21
shows the energy diagram for the ground (S0) and the first excited state (S1) spanned
by these isomers. The relative ground-state energies of the isomers are different from
those in vacuo[126]. The direction and the relative magnitude of the pretwist is in
good agreement with the X-ray observation[127]. The angle ϕ9 and ϕ11 deviate
rather largely from the perfect trans configuration at the bathoRh equilibrium con-
figuration, which is also in good agreement with X-ray crystallography results[139].
On the other hand, the present excitation energies ranging from 76 to 84 kcal/mol
are larger than the experimental measurements (53 - 59 kcal/mol). Nevertheless,
the relative order of the vertical excitation energies is qualitatively reproduced. This
qualitative reproduction should be sufficient for the present purpose. The small po-
tential barrier found in our previous calculation of isoRh in vacuo[126] is not found in
the present calculation. The reason for this is not clear at this stage, unfortunately.
Probably, much higher level of quantum chemical calculations would be needed to
clarify this and that is currently beyond our scope. The ground and excited state
surfaces are connected by conical intersections (CI) which exist on the half way
between cis and trans forms along each twist angle. In all cases the double bond
in the active torsion coordinate stretches to a single bond at minimum energy CIs.
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In our previous calculations we found a CI that directly connects 9-cis and 11-cis,
but that disappears when the opsin environment is taken into account. Overall, the
calculated results are in qualitative agreement with the experimental measurements,
and thus we may say that the present calculations well simulate the dynamics of the
systems.

The calculated quantum yields are 0.52 and 0.31 for Rh and isoRh, respectively.
The corresponding experimental values are 0.65 and 0.22, as mentioned before[135,
128]. The slight overestimation of the isoRh quantum yield may be due to the
underestimation of the disturbance by the opsin environment and irreproducibility
of the S1 barrier. Photoexcitation of Rh only leads to bathoRh and the reactant, and
generation of isoRh is totally blocked by the opsin environment. Thus, as mentioned
before, the trajectories that lead to 9-cis isomer without the opsin environment are
actually blocked away to generate all-trans bathoRh instead. It is also found that
the opsin environment totally blocks simultaneous twisting of ϕ9 and ϕ11 for Rh
as well as isoRh, while the twist in the opposite direction of ϕ9 and ϕ11 can be
seen in all cases. Photoexcitation of isoRh yields a small amount of 9,11-di-cis
product (4%) in addition to bathoRh, whereas Rh provides the bathoRh alone.
Thus, the rigorous selectivity of Rh production would be another biological reason
for living creatures to choose Rh rather than isoRh. As shown in Fig.22 for the time-
evolution of classical trajectories, the population of bathoRh reaches maximum at
187 and 344 fs for Rh and isoRh, respectively. The experimentally observed periods
(200 and 600 fs) are reasonably reproduced with a slight underestimation. This
underestimation would be mainly due to the overestimation of excitation energies
and the underestimation in the case of isoRh may be due to the lack of a potential
barrier in the excited state. The fact that the dynamics in the case of Rh is fast
and straightforward is responsible for coherence, higher quantum yield and shorter
reaction time. In the case of isoRh, on the other hand, the back-and-forth and
complicated dynamics leads to slower and less efficient isomerization. In both Rh
and isoRh cases all trajectories exhibit ”wring-a-wet-towel” motion of ϕ11 and ϕ9.
For all trajectories in Rh as well as most of trajectories in isoRh, the active angle
(ϕ11 in the case of Rh and ϕ9 in the case of isoRh) twists in the counterclockwise
direction and the associate angle (ϕ9 in the case of Rh and ϕ11 in the case of isoRh)
twists in the clockwise direction. Only exception is a small portion of isoRh (13%),
where the active angle twists in the clockwise direction and associate angle twists
in the couterclockwise direction. All the Rh trajectories go through only one CI
with ϕ11 ∼ −90◦ and slightly clockwise-twisted ϕ9 which leads to bathoRh. The
relaxation of excited isoRh, on the other hand, goes through two CIs, one leading
to bathoRh and the other leading to 9,11-di-cis. As mentioned before there is no
CI directly connecting Rh and isoRh.

In summary, the Rh protein environment ensures that the photoisomerization
proceeds in the right direction and optimizes the all-trans product; whereas the
tendency to photoisomerize upon absorption of photon is intrinsic to the central
chromophore itself by Nature’s design. Also the isoRh formation from Rh is totally
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Figure 22: Time evolution of population in the case of (a) Rh and (b) isoRh. Pop-
ulation is counted only after the product region is reached on the ground state.
Reproduced from Ref.[126] by permission of ACS.

blocked and vice versa. Furthermore, the opsin makes transitions to take place near
the CIs. The ZN-QM/MM-TSH scheme is a promising approach for a wide range
of applications. Wider range of QM part with higher level of quantum chemical
calculations would surely yield much better results.

4.8. Photo-isomerization of (z)-penta-2,4-dieniminium cation
(benchmark system) in methanol solution

In order to demonstrate the power of the PME-ONIOM-MD method, namely the
ZN-PME-TSH method, we have investigated the title process[96]. (Z)-penta-2,4-
dieniminium cation (protonated Schiff base, PSB3) is the minimal model based on
13-cis isomer of 11-cis-retinal protonated Schiff base (PSB11), as shown in Fig.23.

First, the ordinary classical MD simulation was performed to determine the ini-
tial molecular coordinates and box size of the central layer under NPT condition
for 10 ns at 1.0 atm and 300 K. The solute molecule is embedded in 36 methanol
molecules and one chloride ion is added to neutralize the unit cell. The charges of
atoms in the unit cell are taken into account in the QM calculation by the electro-
static embedding scheme, and the external charge effect is handled classically by
the PME scheme. In the MM calculation, the force field parameters are taken from
general AMBER force field (GAFF) and the charges of atoms are given by restricted
electrostatic potential charge method. These parameters are generated with Leap
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Figure 23: The molecular structures of (a) 13-cis isomer of PSB11 and (b) PSB3.

and ANTECHAMBER programs, which are also available in AMBER9. The size of
the unit cell employed is 2518 Å3, and the density for solute and solvent is 0.7606
g/cm3, while the concentration of PSB in solution is 0.0542 g/cm3.

For the ab initio quantum chemical calculations the state-averaged CASSCF
method with use of the MIDI4* basis set[141] in the package MOLPRO2012.1[142] is
used. Other ab initiomethods such as MS-MR-CASPT2/cc-pVDZ, SA-CASSCF/cc-
pVDZ and MRCI/cc-pVDZ are also used to check the validity of the present ap-
proach and the SA-CASSCF/MIDI4* was found to be reasonable for the present
purpose. In stead of PME the minimum-image (MI) convention is also used for
comparison. The total number of classical trajectories is 50 in each case and the
time step is 0.5 fs. All the trajectories are propagated until the isomerization is
over.

It should be noted that there are two isomerization channels in solution (see
Fig.24): (i) through the conical intersection with the central C=C double bond
twisting (channel 1) and (ii) through the conical intersection with the terminal
C=N double bond twisting (channel 2). The channel 2, which does not appear in
gas phase[122], is revealed to appear in solution, since the solvent stabilizes the
relevant conical intersection and this CoIn becomes energetically accessible[143].

Figures 25 show time-evolutions of the trajectory population for the three chan-
nels: (i)S1 state, (ii)S0 state via the C=C twisting isomerization and (iii)S0 state
via the C=N twisting isomerization.

The S1 state lifetimes mainly attributed to the channel 1 (C=C isomerization)
and the channel 2 (C=N isomerization) are 3.483 ps and 81.74 fs, respectively in
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(a) (b)

Figure 24: The molecular structures and nonadiabatic coupling vectors at the conical
intersections of the two typical trajectories. (a) C=C twisting motion and (b) C=N
inner rotation.
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Figure 25: The population of all trajectories as a function of evolution-time; trajecto-
ries which stay in S1 are green. Those having hopped to S0 with C=C isomerization
are blue. Those with C=N inner rotation are brown. (a) and (b) show the whole
profile and the first 500 fs.
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Table 4: Lifetime by PME-ONIOM-MD and MI-ONIOM-MD simulations

Theoretical approach Channel-1 (C=C) Channel-2 (C=N)
PME/SA-CASSCF/MIDI4* 3.434 ps 81.74 fs
MI/SA-CASSCF/MIDI4* 0.4642 ps 91.43 fs

the case of PME-ONIOM-MD/SA-CASSCF/MIDI4* method, as is shown in Table
4. The MI-ONIOM-MD/SA-CASSCF/MIDI4* calculations are also performed and
the corresponding life times are shown in Table 4. The life time 91.43 fs of the inner
rotation (channel 2) is similar to that of PME case, but the life time 0.4642 ps of
C=C isomerization (channel 1) is much shorter than that of PME. Actually, the
PME result is in accordance with the experimental finding[144] that there are two
reaction paths with 90 fs and 3.5 ps lifetimes. This is one of the most important
results of the present calculations. The solvent charge clearly affects the behavior
of the nonadiabatic phenomenon of the C=C isomerization, since this isomerization
is characterized by charge transfer. This effect is nicely reproduced by the present
PME method with the long range interactions properly taken into account by the
periodic boundary condition.

A typical time-evolution of the bond lengths and its dihedral angles is analyzed
in the two channels. In the case of channel 1, the bond length gradually stretches
to 1.45 Å by about 2400 fs and the dihedral angle is twisted by about -60 degrees.
This is due to the bond character change from sp2 hybridization to sp3 by losing the
double bond character. This is in accordance with the charge transfer mechanism
mentioned above. In the case of channel 2 (C=N twisting) the bond length of C=N
remains at 1.4 Å up to 75 fs and the dihedral angle rapidly twists by more than -90
degrees.

Finally, it is noted that the life times obtained by PME-ONIOM-MD/MS-MR-
CASPT2/MIDI4* are 135.9 and 49.12 fs for channels 1 and 2, respectively. These
do not agree with the experimental finding, especially the time scale of channel 1 is
quite different. This is due to the large bore funnel of conical intersection created
by MS-MR-CASPT2.
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(a) (b)

Figure 26: The molecular structures, (a) 1,3-cyclohexadiene (CHD) and (b) 1,3,5-
cis-hexatriene (HT).

4.9. Photo-isomerization reaction between 1,3-cyclohexatriene
and 1,3,5-cis-hexatriene in vacuo and solution

The reversible structural transformation of photochromic molecules has fascinated
us over the 20th century. The applications are diversifying into various fields of
photochemistry, material science and biochemistry in the 21st century. Some of
photochromic systems are based on chemical compounds containing the Kekul-
type structure defined by six-carbon skeleton. The photoisomerization between
1,3-cyclohexadiene (CHD) and 1,3,5-cis-hexatriene (HT) structures is the simplest
system to represent the feature (see Fig.26) compared to diarylethenes, fulgides and
vitamin D [145]-[148]. This prototype photoreaction has also attracted a great deal
of interest as a simple model in both theoretical [149]-[163] and experimental [167]
-[187] studies. Kosma et al. experimentally observed the CHD/HT isomerization
in gas-phase by the time-resolved photoelectron/mass spectroscopy[185]. CHD was
photoexcited to S1 by the ultrashort third harmonic pulse at 270 nm. They reported
that molecular wavepacket passes through the conical intersection (CoIn) of 11B/21A
(S1/S2) at 56 fs after photoexcitation, and then the wavepacket is deactivated into
S0 through the CoIn of 21A/11A (S0/S1) at 136 fs. Pullen et al. also made obser-
vations of this photoisomerization and the subsequent energy dispersion process in
cyclohexane solution by using two-color transient absorption kinetic measurements
and novel time-resolved absorption spectroscopy at the 260 - 300 nm[173, 174]. Their
measurement uncovered that the sub-picosecond photoproduct formation of CHD
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or HT occurs on the time-scale of 250 fs, and then the isomerization to other struc-
tural isomers of HT, i.e. cZt-HT and tZt-HT, happens in the electronic ground state
because of the energy dispersion after the ultra-fast photoproduct formation. This
energy stabilization of HT isomers in S0 was observed on the time-scale of 1 - 5 ps.
The product ratio of CHD:HT in cyclohexane solvent was reported as 60:40[175].
The CHD/HT photoisomerization in ethanol solvent was also investigated by tran-
sient absorption spectroscopy in the wavelength range between 255 and 450 nm by
Lochbrunner et al. Their study in ethanol solvent suggested that the photoproduct
formation of CHD or HT occurs within 300 fs[176].

On the other hand, Tamura et al. studied quantum dynamics of this reaction by
using the wavepacket propagation method on a two-dimensional potential energy
surface[160]. The branching ratio between CHD and HT was found to be 50:50 in
their model. The time duration of the first decay 11B-21A is approximately 15 - 25
fs, and then the molecular wavepacket goes through the next CoIn of S0/S1 at 130
fs. Hofmann and de Vivie-Riedle also performed the wavepacket dynamics using the
effective Hamiltonian based on the three-dimensional model[155]. The correlation
between the theoretical CHD:HT ratios and locations of CoIn was discussed by
them. Although some other theoretical studies have also been reported so far,
any simulation has not yet been carried out with all degrees of freedom taken into
account. In many cases, in order to reduce the computational cost the effective
Hamiltonian in the framework of the reduced dimensional model has been employed.
Usually, the ring opening degree of CHD and the dihedral angle are taken into
account.

In the present study, nonadiabatic ab initio molecular dynamics (ab initio MD)
simulation is performed to explore the CHD/HT isomerization dynamics initiated by
the photoexcitation of CHD to the S1 and S2 states[164]. Particularly, the solvation
effects in hexane and ethanol solvents are investigated by the ZN-PME-TSH hybrid
method (see Fig.27)[164, 165, 166].

The MS-MR-CAS(8e,8o)PT2/cc-pVDZ is employed for the QM part. The sim-
ulation is performed for 2 ps, because the experimental time-resolved measurement
of this isomerization has reported the picosecond-order lifetime. Time-profiles of
QM part (CHD) potential energy in solution phases show smaller fluctuation than
in-vacuo case (see Fig.28). This means that the molecular motions of CHD solute
are confined by the solvent molecules.

The radial distribution function (RDF) is numerically analyzed with respect
to solute-solvent interaction. As shown in Fig.29, ethanol solvent (red line) has
stronger peaks around 5 Å than hexane solvent, which means that there is a strong
cage effect in ethanol solvent. The cage effect would appear because of the induced
dipole moment of CHD in ethanol solvent; the dipole moment in the S2 state is 1.02
Debye [166]. Since the hydorgen-bond network is constructed by hydroxy group
of ethanol solvent, the weakly charged CHD is surrounded by the hydorgen-bond
network in the electronic excited state. On the other hand, hexane solvent (black
line) shows an almost uniform distribution. As Dias et al. pointed out[188], the

52



(a) (b)

Figure 27: CHD molecule (indicated by ball and stick model) surrounded by 304
solvent molecules, (a) hexane and (b) ethanol solvents.

Table 5: The product branching ratio (CHD:HT) determined by nonadiabatic
ab initio MD simulations for photoexcitations to S1 and S2 in each solvent.

Photoexcitation In hexane In ethanol In vacuo
S1 ← S0 40:60 80:20 60:40
S2 ← S0 30:70 60:40 70:30

RDF of hexane solvent has a similar uniform distribution, albeit their simulations
are different from our approach. This uniform distribution is generally attributed to
the high flexibility of liquid structure. The strong affinity between hexane and CHD
is due to nonpolar solutions, which caused the high flexibility between solute and
solvent. The efficiency of the photochromic conversion of CHD to HT is evaluated
at both S1- and S2-excitations in two different types of solvents, ethanol and hexane.
The CHD:HT branching ratios of the products are listed in Table 5. The solvent-
dependent branching ratios can be explained also by the flexibility of liquid structure
and demonstrate the power of the present method.

53



P
ot

en
tia

l e
ne

rg
y 

/ e
V

0

2

4

6

8

10 S0

S1

S2

(a)

P
ot

en
tia

l e
ne

rg
y 

/ e
V

0

2

4

6

8

10 S0

S1

S2

(b)

Time / fs

0 20 40 60 80 100 120 140

P
ot

en
tia

l e
ne

rg
y 

/ e
V

0

2

4

6

8

10 S0

S1

S2

(c)

Figure 28: A typical time-evolution of potential energies of QM part in (a) hexane,
(b) ethanol and (c) vacuum after photoexcitation to S1.
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the respective simulations in ethanol and hexane solvents.
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5. Future perspectives

The ZN-TSH method was shown to be useful to clarify various nonadiabatic chemi-
cal dynamics. The method can be combined with the QM/MMmethod and with the
PME (particle-mesh Ewald) method to investigate nonadiabatic chemical and bio-
logical dynamics embedded in environment such as protein environment and solvent.
If necessary, various phases including those induced by nonadiabatic transitions can
be incorporated. The corresponding method is called ZN-HKSCIVR, in which the
Zhu-Nakamura formulas are incorporated into the Herman-Kluk type semiclassi-
cal initial value representation method[44]. Although in this review article we have
mainly reported the works carried out by the present authors’ research groups, some
other groups have also employed the Zhu-Nakamura theory to clarify the nonadi-
abatic chemical dynamics of polyatomic molecules. Examples are nonadiabatic ab
initio molecular dynamics of photoisomerization in bridged azobenzene by Han’s
group[189] and in azobenzene by Zhu’s group[190].

The various methods explained in this review article present promising ap-
proaches with a wide range of chemical and biological applications. Examples of
useful future applications would be photochromism[4], molecular switches[5], molec-
ular machines[6], molecular devices[7], photo-synthesis[23], and solar cells[191]. An-
other interesting field is to clarify the isotopic variations of atmospheric molecules
in geologically old age in the field of geochemistry[192]. In all these systems, nona-
diabatic transitions are supposed to play crucial roles.

Quantum mechanical tunneling as another important quantum effect can be
incorporated into the above scheme[45]. Along classical trajectories one can detect
caustics which define the boundary between classically allowed and forbidden regions
and an optimal tunneling path can be defined starting from each caustic. By doing
this a semiclassical molecular dynamics simulation method can be developed, in
which all the important quantum mechanical effects can be taken into account.

Another important application of the above methods is laser control of chemi-
cal dynamics[193]. Conical intersections can be created by shining laser, as can be
understood from the picture of ”dressed state” that means that potential energy
surfaces are shifted up and down by the amount of photon energy. The diabatic
coupling at this artificially created conical intersection is the laser-molecule dipole
interaction and thus by manipulating laser parameters such the frequency, strength
and polarization, not only the wave packet motion but also the nonadiabatic tran-
sitions at the conical intersections can be controlled in a desirable way. In such a
way, not only clarifying the dynamics but also controlling and designing reactions
would become possible.

There are some general problems to be overcome in the present methods de-
scribed above. The first one is the large amount of cpu-time due to time consuming
ab initio quantum chemical computations. On-the-fly scheme saves time quite a lot
compared to the ab initio computation of global potential energy surfaces in ad-
vance. However, accurate evaluation of conical intersections requires high-level of

56



quantum chemical computations, which is very much time consuming even in the
on-the-fly method. One good solution is to use highly parallelized computers, since
each classical trajectory can be run independently. The second one is the dimen-
sionality problem, namely, we have to figure out a good way to reduce the dimension
of the central reaction system not only in the nonadiabatic transition case but also
in the quantum mechanical tunneling case. The third problem is that we usually
don’t know in advance where conical intersections or potential barriers (transition
states) exist in the high dimensional systems. It would probably be useful to employ
a method such as the one proposed by Maeda and Ohno[194] with use of low level
of quantum chemical methods before starting real heavy computations.
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Appendix

Fortran code for the Zhu-Nakamura formulas

The attached routines written in Fortan are used for ZN-TSH computation. The
main subroutine for the ZN formulas is “hop.f” at the top of the hierarchy structure
shown below. This routine returns the hopping probability between the two potential
energy surfaces and the corresponding phase induced by the transition.

Included files:

Figure 30: Hierarchy of subroutines to compute nonadiabatic transition probabilities
and phases.

Figure 30 shows all the routines and their hierarchy. The “run molpro.f” in red
represents the routine that should be supplied by the user. Here, it is assumed that
the Molpro (version 2012)[142] is employed for the on-the-fly ab initio computation.
Executing “call system(“molpro input.com”)” in Fortran code, the user can run the
ab initio program. If the user-supply main program reads the output file and gives
all data in the subroutine “hop.f”, the code starts to compute the hopping proba-
bility. The interfaces of the main subroutine (hop.f) and the user-supply subroutine
(run molpro.f) are shown in the sections A and B below.

Some of the main subroutines are explained below with the information of the
corresponding section and page number in the text.

(i) findR0 LZ NT.f finds R0 as shown in Fig.1 in Section 2 on page 6.

(ii) LZ.f computes the quantities in Sections 2.1.1 and 2.2.1 on pages 6-8 and 10-11.

• the transition probability, pZN [Eqs.(2. 11) and (2. 41)]
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• the phases, ψZN [Eqs.(2. 15) and (2. 46)], σZN [Eqs.(2. 15), (2. 50) and
(2. 52)] and
δZN [Eqs.(2. 25), (2. 51) and (2. 53)]

(iii) NT.f computes the quantities in Sections 2.1.2 and 2.2.2 on pages 8-9
and 11-12.

• the transition probability, P12 [Eqs.(2. 27), (2. 54) and (2. 59)]

• the phases, ϕ̄S [Eq.(2. 29)], ϕ [Eq.(2. 67)], σZN [Eqs.(2. 28), (2. 69) and
(2. 62)],
δZN [Eqs.(2. 32), (2. 70) and (2. 61)],
∆12,11,22 [Eqs.(2. 36), (2. 37), (2. 38), (2. 64) and (2. 71)] and
U1,2 [Eqs.(2. 40), (2. 35) and (2. 66)]

Note that the main subroutine (hop.f) returns the only hopping probability in
the argument of “prob”, but the phases listed above are shown on standard output
(stdout) in computer (The default destination of stdout is the display screen on
computer.). If the phases are required to be stored in arrays, users need to improve
the arguments in “hop.f”, “LZ.f” and “NT.f.”

A. The interface of the main subroutine “hop.f”

subroutine hop(etot1d, ek1d,v1d,dir, r,v, ead,prob,
& natom,nsurf , is0, is1,keyhop,kavail)

Cartesian coordinates are employed for these arguments; the input/output is indi-
cated in parentheses.

etot1d : energy for hopping direction. (input)

ek1d : kinetic energy for hopping direction. (input)

v1d : velocity in the hopping direction. (input)

dir : hopping direction. (input)

r : current coordinate in atomic unit (a0). (input)

v : current velocity. (input)

ead : adiabatic potential energies in lower and upper potentials (Eh).
(input)

prob : nonadiabatic transition probability. (output)
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natom : number of atoms. (input)

nsurf : number of potential energy surfaces taken into account. (input)

is0 : index of the relevant state. (input)

is1 : index of the adjacent state. (input)

keyhop : type for LZ transition (E ≥ EX or E < EX) and NT transition
(E ≥ Eb, Eb > E ≥ Et or E < Et) by 1-2 and 3-5. (output)

kavail : flag indicating whether the transition is classically allowed or not.
If kavail=1, etot1d is not enough to hop vertically. (output)

The sizes of dimension of the arguments are as follows;

• dir, r and v arrays are 3(x−, y − and z − components) × matom; natom ≤
matom. (matom is the maximum counting number of atoms defined in the
including file, “para.inc.”)

• ead array is msurf; nsurf ≤ msurf. (msurf is the maximum counting number
of potential surfaces defined in “para.inc.”)

• otherwise, all arrays are single values

B. The interface of the user-supplied subroutine “run molpro.f”

subroutine run molpro(r c,v c,dvdx c,nacme c, tdm c,
& natom,nsurf , isurf1, isurf2, indgna)

Cartesian coordinates are employed for the arguments; the input/output is indicated
in parentheses. This routine controls the ab initio calculation with the argument of
“indgna” by 0, 1 and 2.

r c : current coordinates (a0). (input)

v c : adiabatic potential energy (Eh). (output)

dvdx c : adiabatic potential energy gradient. (output)

nacme c : nonadiabatic coupling element (nonadiabatic vector). (output)

tdm c : transition dipole moment. (output)
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natom : number of atoms. (input)

nsurf : number of potential energy surfaces taken into account. (input)

isurf1 : index of the relevant state. (input)

isurf2 : index of the adjacent state. (input)

indgna controls the output of energy, gradients, non-adiabatic couplings
and so on. (input)

•When indgna = 0, only the potential energy is stored in v c.

•When indgna = 1, potential energy and its gradient are store in
v c and dvdx c.

•When indgna = 2, potential energy and nonadiabatic coupling
elements are stored in v c and nacme c.

The sizes of dimension for the arguments are as follows;

• r c, dvdx c, nacme c and tdm c arrays are 3 × matom; natom ≤ matom.
(matom defined in the including file, “para.inc.”)

• v c array is msurf; nsurf ≤ msurf. (msurf defined in “para.inc.”)

• otherwise, all arrays are single values

C. The ZN formulas software archived in Supplemental Information

The software is archived in “http://pweb.cc.sophia.ac.jp/nanbu lab/zntsh” with zip-
format, “src.zip.” The archived file includes all files listed in Fig.30. The user should
modify the “para.inc” and “atom.inc” depending on the molecular system.
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