氏名
中岡俊裕(TOSHIHIRO NAKAOKA)
所属
上智大学理工学部・機能創造理工学科
〒102-8554 東京都千代田区紀尾井町7-1
Email:
職歴
04/2017- 上智大学 理工学部 機能創造理工学科 教授
04/2010-03/2017上智大学 理工学部 機能創造理工学科 准教授
10/2008-03/2013
科学技術振興機構
さきがけ
革新的次世代デバイスを目指す材料とプロセス 研究者
11/2007-03/2010
東京大学
生産技術研究所
特任准教授
09/2006-10/2007
東京大学
生産技術研究所
特任講師
08/2005-04/2006 ドイツミュンヘン工科大学Walter Schottky研究所 客員研究員
04/2002-08/2006
東京大学
先端科学技術研究センター
特任助手
04/2001-03/2002
東京大学
生産技術研究所
研究機関研究員
学歴
平成13年(2001年)3月 博士(理学)(大阪大学)取得 (指導教官:邑瀬和生教授)
Experimental research in nanostructural dynamics of chalcogenide glasses investigated by Raman scattering and photoluminescence measurements under the direction of Prof. Murase. Thesis: "Investigation of nanostructural dynamics and rigidity percolation in network glasses."
平成13年(2001年)3月 大阪大学大学院理学研究科 博士後期課程物理学専攻修了
平成11年(1999年)3月 大阪大学大学院理学研究科 博士前期課程物理学専攻修了
平成9年(1997年)3月 大阪大学理学部物理学科 卒業
所属学会
日本物理学会
応用物理学会
専門分野
ナノエレクトロニクス、
電子物性、光物性
研究テーマ
- Single photon and/or electron quantum devices using self-assembled quantum dots
- Converts between elementary excitations in solids.
- Quantum state transfer between photon and electron.
- Physics of electronic and optical properties in quantum dot.
- Physics and controll of spin or g-factor in quantum dot
- Nano-cavity effects, photonic crystal and plasmonics
- Photo-induced phenomena in semiconductors
研究内容
2007-present
- Chalcogenide semiconductors for novel devices and physics:
solid state electrolyte, electrochemical metallization memories (ECM), super-ionic conduction of silver, fractal growth of metal filaments,
photo-induced phenomena, and plasmonics.
- Devices for quantum information technology:
Fabrication and experimental measurement of single photon electron devices using self-assembled dots, nitride nanowires.
-
2005-2006
- Time-resolved measurement on quantum mechanically coupled exciton states in a quantum dot molecule (QDM), which is the first observation of PL decay in single QDM. We have also shown
tuning of radiative recombination rate as fraction of direct exciton character is varied.
-
2003-2005
- Experimental and theoretical investigation of g-factor of self-assembled quantum dots. Knowledge of electron and hole g-factors, which are the coefficient connecting spin moment with magnetic one, is important to design such spin-based devices. For example, the system with a large g-factor is preferable for controlling spin-qubit while near-zero electron g-factor is suitable to design a quantum receiver. We have investigated the g-factor in self-assembled dots by single dot spectroscopy under applied magnetic field and by 8 band kp calculation. We have demonstrated experimentally and theoretically that the g-factor in InGaAs self-assembled dots can be tuned by changing the dot-size and/or by modifying strain.
-
2003-2004
- Time resolved photoluminescence measurement and single dot spectroscopy of vertically-stacked self-assembled quantum dots. We have observed a delay of PL due to non-resonant tunneling between the stacked dots.
-
2002-2004
- Fabrication and optical measurement of micromachined airbridge in which quantum dots are embedded. We have controlled the PL emission energy of the dots by using the MEMS device. This type of structure enables deformation coupling between nanomechanical mode of airbridge and a QD.